Jump to content

Роберт В. Брукс

Роберт В. Брукс (1985)
Роберт В. Брукс (1985)

Роберт Вулф Брукс (Вашингтон, округ Колумбия, 16 сентября 1952 г. – Монреаль, 5 сентября 2002 г.) был математиком, известным своими работами в области спектральной геометрии , римановых поверхностей , упаковок кругов и дифференциальной геометрии .

Он получил докторскую степень. из Гарвардского университета в 1977 году; его диссертация «Гладкие когомологии групп диффеоморфизмов » была написана под руководством Рауля Ботта . Работал в Университете Мэриленда (1979–1984), затем в Университете Южной Калифорнии , а затем, с 1995 года, в Технионе в Хайфе . [1]

Работа [ править ]

Во влиятельной статье ( Brooks 1981 ) Брукс доказал, что когомологии топологического пространства изоморфны ограниченные ограниченным когомологиям его фундаментальной группы . [2]

Почести [ править ]

Избранные публикации [ править ]

  • Брукс, Роберт (1981). «Некоторые замечания об ограниченных когомологиях». Римановы поверхности и связанные с ними темы: Материалы конференции в Стоуни-Брук 1978 г. (Государственный университет Нью-Йорка, Стоуни-Брук, штат Нью-Йорк, 1978) . Энн. математики. Стад. Том. 97. Принстон, Нью-Джерси: Princeton Univ. Нажимать. стр. 53–63. МР   0624804 .
  • Брукс, Роберт (1981). «Связь между ростом и спектром лапласиана». Mathematische Zeitschrift . 178 (4): 501–508. дои : 10.1007/BF01174771 . МР   0638814 . S2CID   122114581 .
  • Брукс, Роберт (1981). «Фундаментальная группа и спектр лапласиана». Комментарии по математике Helvetici . 56 (4): 581–598. дои : 10.1007/BF02566228 . МР   0656213 . S2CID   121175762 .
  • Брукс, Роберт (1988). «Построение изоспектральных многообразий». Американский математический ежемесячник . 95 (9): 823–839. дои : 10.1080/00029890.1988.11972094 . МР   0967343 .
Рецензент Маунг Мин-Оо для MathSciNet написал: «Это хорошо написанная обзорная статья о построении изоспектральных многообразий, которые не являются изометрическими, с упором на гиперболические римановы поверхности постоянной отрицательной кривизны». [3]
  • Брукс, Роберт, «Форма в топологии», «Маги формы» , изд. Роберт М. Вайс. Публикации Лорелхерста, 2003.

Ссылки [ править ]

  1. ^ Бузер, Питер (2005). «О математических работах Роберта Брукса». Геометрия, спектральная теория, группы и динамика . Созерцание Математика. Том. 387. Провиденс, Род-Айленд: Амер. Математика. Соц. стр. 1–35. ISBN  9780821885642 . МР   2179784 .
  2. ^ Иванов, Николай В. (1987). «Основы теории ограниченных когомологий». Журнал математических наук . 37 (3): 1090–1115. дои : 10.1007/BF01086634 . МР   0806562 . S2CID   122503635 .
  3. ^ МР 967343

Внешние ссылки [ править ]

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 81acadc8ea53ffc34f36586736eada29__1712472960
URL1:https://arc.ask3.ru/arc/aa/81/29/81acadc8ea53ffc34f36586736eada29.html
Заголовок, (Title) документа по адресу, URL1:
Robert W. Brooks - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)