Jump to content

Усталость припоя

Усталость припоя — это механическое разрушение припоя вследствие деформации при циклической нагрузке. Это часто может происходить при уровнях напряжения ниже предела текучести припоя в результате повторяющихся колебаний температуры, механических вибраций или механических нагрузок . Методы оценки усталостного поведения припоя включают анализ методом конечных элементов и полуаналитические уравнения в замкнутой форме . [1]

Припой — это металлический сплав, используемый для образования электрических, тепловых и механических соединений между компонентом и подложкой печатной платы (PCB) в электронной сборке. Хотя известно, что другие формы циклической нагрузки вызывают усталость припоя, по оценкам, большая часть электронных отказов связана с термомеханическими причинами. [2] приводится в движение из-за циклического изменения температуры . [3] При термоциклировании в припое возникают напряжения из-за несоответствия коэффициента теплового расширения (КТР). Это приводит к тому, что паяные соединения испытывают невосстановимую деформацию из-за ползучести и пластичности , которая накапливается и приводит к деградации и возможному разрушению .

Исторически припои олово-свинец были обычными сплавами, используемыми в электронной промышленности . по-прежнему используются в некоторых отраслях и приложениях, Несмотря на то, что бессвинцовые припои они стали значительно более популярными из-за нормативных требований RoHS . Эта новая тенденция усилила необходимость понять поведение бессвинцовых припоев.

Была проделана большая работа по характеристике поведения различных припоев при ползучести и усталости и разработке моделей прогнозирования повреждений в течение срока службы с использованием подхода физики отказов . Эти модели часто используются при попытке оценить надежность паяных соединений. Усталостная долговечность паяного соединения зависит от нескольких факторов, в том числе: типа сплава и полученной микроструктуры , геометрии соединения, свойств материала компонента, свойств материала подложки печатной платы, условий нагрузки и граничных условий сборки.

Термомеханическая усталость припоя

[ редактировать ]

В течение срока службы изделия оно подвергается колебаниям температуры из-за скачков температуры в зависимости от применения и самонагреванию из-за рассеиваемой мощности компонентов . Глобальные и локальные несоответствия коэффициента теплового расширения (КТР) между компонентом, выводами компонента, подложкой печатной платы и эффектами на уровне системы. [4] приводные напряжения в межсоединениях (т.е. паяных соединениях). Повторяющиеся циклические изменения температуры в конечном итоге приводят к термомеханической усталости.

Характеристики деформации различных припоев можно описать на микромасштабе из-за различий в составе и получаемой микроструктуре. Различия в составе приводят к изменениям фазы (фаз), размера зерен и интерметаллидов . Это влияет на восприимчивость к механизмам деформации, таким как дислокаций движение , диффузия и скольжение по границам зерен . Во время термоциклирования микроструктура припоя (зерна/фазы) имеет тенденцию к укрупнению. [5] поскольку энергия рассеивается из сустава. В конечном итоге это приводит к возникновению и распространению трещин , которые можно описать как накопленные усталостные повреждения. [6]

Полученное объемное поведение припоя описывается как вязкопластическое (т.е. зависящее от скорости неупругой деформации) с чувствительностью к повышенным температурам. Большинство припоев на протяжении всего срока службы подвергаются температурному воздействию, близкому к температуре плавления (высокая гомологичная температура ), что делает их подверженными значительной ползучести. Было разработано несколько конститутивных моделей для определения характеристик ползучести свинцовых и бессвинцовых припоев. Поведение ползучести можно описать тремя стадиями: первичной, вторичной и третичной ползучестью. При моделировании припоя вторичная ползучесть, также называемая установившейся ползучестью (постоянная скорость деформации), часто является областью интереса для описания поведения припоя в электронике. Некоторые модели также включают первичную ползучесть. Двумя наиболее популярными моделями являются гиперболические синусоидальные модели, разработанные Гарофало. [7] и Ананд [8] [9] для характеристики установившейся ползучести припоя. Эти параметры модели часто используются в качестве входных данных при моделировании FEA , чтобы правильно охарактеризовать реакцию припоя на нагрузку.

Модели усталости

[ редактировать ]

В моделях повреждений припоя используется подход, основанный на физике разрушения, путем связывания физического параметра, который является критической мерой процесса механизма повреждения (т. е. диапазона неупругой деформации или плотности рассеиваемой энергии деформации), с циклами до разрушения. Связь между физическим параметром и циклами до отказа обычно принимает степенной закон или зависимость модифицированного степенного закона с константами модели, зависящими от материала. Эти константы модели получены в результате экспериментальных испытаний и моделирования для различных припоев. Для сложных схем нагружения действует закон линейной суперпозиции Майнера о повреждении. [10] используется для расчета накопленного ущерба.

Модель Гроба – Мэнсона

[ редактировать ]

Обобщенный Гроб – Мэнсон [11] [12] [13] [14] модель учитывает диапазон упругих и пластических деформаций путем включения уравнения Баскена [15] и принимает вид:

Здесь ∆ε ⁄ 2 представляет собой диапазон упруго-пластических циклических деформаций, E представляет собой модуль упругости, σ m представляет собой среднее напряжение, а N f представляет собой циклы до разрушения. Остальные переменные, а именно σ f , ε' f , b и c, являются коэффициентами усталости и показателями степени, представляющими константы модели материала. Обобщенная модель Коффина-Мэнсона учитывает эффекты многоцикловой усталости (HCF), главным образом, из-за упругой деформации, и малоцикловой усталости (LCF), главным образом, из-за пластической деформации.

Модель Энгельмайера

[ редактировать ]

В 1980-х годах Энгельмайер предложил модель: [16] в сочетании с творчеством Уайлда, [17] это объясняет некоторые ограничения модели Коффина-Мэнсона, такие как влияние частоты и температуры. Его модель принимает аналогичную форму степенного закона:

Энгельмайер связывает общую деформацию сдвига (∆γ) с циклами до разрушения ( N f ). ε' f и c — константы модели, где c — функция средней температуры во время термоциклирования ( T s ) и частоты термоциклирования ( f ).

∆γ можно рассчитать как функцию расстояния от нейтральной точки ( LD ) , высоты паяного соединения ( h s ), коэффициента теплового расширения (∆ α ) и изменения температуры (Δ T ). В этом случае C — константа эмпирической модели.

Эта модель изначально предлагалась для безвыводных приборов с оловянно-свинцовым припоем. С тех пор модель была модифицирована Энгельмайером и другими. [ ВОЗ? ] для учета других явлений, таких как компоненты со свинцом, время термоциклирования и бессвинцовые припои. Первоначально это было существенным улучшением по сравнению с другими методами прогнозирования усталости припоя, такими как тестирование и простые преобразования ускорения, но сейчас это общепризнано. [ нужна ссылка ] что Энгельмайер и другие модели, основанные на диапазоне деформаций, не обеспечивают достаточной степени точности.

Модель Дарво

[ редактировать ]

Дарво [18] [19] предложила модель, связывающую величину средневзвешенной по объему неупругой рабочей плотности, количества циклов до зарождения трещины и скорости распространения трещины с характерными циклами до разрушения.

В первом уравнении N 0 представляет количество циклов возникновения трещины, ∆W представляет собой плотность неупругой работы, K 1 и K 2 являются константами модели материала. Во втором уравнении da/dN представляет скорость распространения трещины, ∆W представляет собой плотность неупругой работы, K 3 и K 4 являются константами модели материала. В этом случае скорость распространения трещины приближается к постоянной. N f представляет характерные циклы до отказа, а a представляет характерную длину трещины. Константы модели могут быть адаптированы для различных припоев с использованием комбинации экспериментальных испытаний и моделирования методом конечных элементов (FEA).

Несколько авторов сочли модель Дарво относительно точной. [20] [21] Однако из-за необходимых знаний, сложности и ресурсов моделирования его использование в основном ограничивалось производителями компонентов, оценивающими упаковку компонентов. Модель не получила одобрения в отношении моделирования усталости припоя во всей печатной плате и оказалась неточной при прогнозировании эффектов на уровне системы (трехосность) на усталость припоя. [22]

Модель Блаттау

[ редактировать ]

Текущая модель усталости паяных соединений, которую предпочитает большинство OEM-производителей электроники во всем мире. [ нужна ссылка ] — это модель Блаттау , которая доступна в программном обеспечении Sherlock Automated Design Analysis . Модель Блаттау — это эволюция [ нужна ссылка ] предыдущих моделей, рассмотренных выше. Блаттау использует энергию деформации, предложенную Дарво, и использует уравнения замкнутой формы, основанные на классической механике, для расчета напряжения и деформации, приложенных к паяному межсоединению. [23] Пример этих расчетов напряжения/деформации для простого безвыводного компонента чипа показан в следующем уравнении:

Здесь α — КТР, T — температура, L D — расстояние до нейтральной точки, E — модуль упругости, A — площадь, h — толщина, G — модуль сдвига, ν — коэффициент Пуассона , а — край длина медной контактной площадки. Индексы 1 относятся к компоненту, 2 и b относятся к плате, а s относятся к паяному соединению. Затем рассчитывается напряжение сдвига (∆τ) путем деления рассчитанной силы на эффективную площадь паяного соединения. Энергия деформации рассчитывается с использованием диапазона деформации сдвига и напряжения сдвига по следующему соотношению:

Это приближает петлю гистерезиса к примерно равносторонней форме. Блаттау использует это значение энергии деформации в сочетании с моделями, разработанными Саедом. [24] связать рассеиваемую энергию деформации с циклами разрушения.

Другие модели усталости

[ редактировать ]

Модель Норриса-Ландцберга представляет собой модифицированную модель Коффина-Мэнсона. [25] [26]

Дополнительные модели, основанные на диапазоне деформации и энергии деформации, были предложены несколькими другими. [24] [27] [28]

Вибрация и циклическая механическая усталость

[ редактировать ]

и циклическая механическая усталость не так распространены, как термомеханическая усталость припоя, но Известно, что вибрационная усталость также вызывают отказы припоя. Вибрационная усталость обычно считается многоцикловой усталостью (HCF), повреждение которой вызвано упругой деформацией, а иногда и пластической деформацией. Это может зависеть от входного возбуждения как для гармонических , так и для случайных колебаний . Стейнберг [29] разработал модель вибрации для прогнозирования времени до отказа на основе рассчитанного смещения платы. Эта модель учитывает входной профиль вибрации, такой как спектральная плотность мощности или временная диаграмма ускорения, собственная частота печатной платы и передаточная способность. Блаттау разработал модифицированную модель Штейнберга. [30] который использует деформации на уровне платы, а не смещение, и чувствителен к отдельным типам упаковки.

Кроме того, низкотемпературный изотермический механический цикл обычно моделируется с помощью комбинации моделей диапазона деформации LCF и HCF или моделей энергии деформации. Сплав припоя, геометрия и материалы сборки, граничные условия и условия нагрузки будут влиять на то, будет ли в усталостном повреждении преобладать упругое (HCF) или пластическое (LCF) повреждение. При более низких температурах и более высоких скоростях деформации ползучесть можно считать минимальной, а любое неупругое повреждение будет зависеть от пластичности. В случаях этого типа использовалось несколько моделей диапазона деформации и энергии деформации, например, обобщенная модель Гроба – Мэнсона. При этом была проделана большая работа по характеристике модельных констант различных моделей повреждений для разных сплавов.

См. также

[ редактировать ]
  1. ^ Серебрени М., Блаттау Н., Шарон Г., Хиллман К., Маккласки П. «Полуаналитическая модель усталостной долговечности для оценки надежности паяных соединений в корпусах qfn при термоциклировании». SMTA ICSR, 2017. Торонто, Онтарио, https://www.researchgate.net/publication/317569529_SEMI-ANALYTICAL_FATIGUE_LIFE_MODEL_FOR_RELIABILITY_ASSESSMENT_OF_SOLDER_JOINTS_IN_QFN_PACKAGES_UNDER_THERMAL_CYCLING
  2. ^ Г. Шэрон, «Температурный цикл и электроника», https://www.dfrsolutions.com/hubfs/Resources/services/Temperature-Cycling-and-Fatigue-in-Electronics-White-Paper.pdf
  3. ^ Вундерле, Б.; Б. Мишель, «Прогресс в исследованиях надежности в микро- и нанообласти», «Микроэлектроника и надежность», V46, выпуск 9–11, 2006 г.
  4. ^ https://www.dfrsolutions.com/hubfs/Resources/System_Level_Effects_on_Solder_Joint_Reliability.pdf [ только URL-адрес PDF ]
  5. ^ Крина Раута, Абхиджит Дасгупта, Крейг Хиллман, «Огрубление фазы припоя, основы, подготовка, измерение и прогнозирование», https://www.dfrsolutions.com/hubfs/Resources/services/Solder-Phase-Coarsening-Fundamentals-Preparation- Измерение и прогнозирование.pdf?t=1514473946162
  6. ^ «Паяные соединения в электронике: дизайн для надежности». CiteSeerX   10.1.1.115.7354 .
  7. ^ Гарофало, Ф., 1965, «Основы ползучести и ползучести металлов», Макмиллан, Нью-Йорк.
  8. ^ Ананд, Л., 1985, «Определительные уравнения горячей обработки металлов», J. Plasticity, 1 (3), стр. 213–231.
  9. ^ Браун, SB; Ким, К.Х.; Ананд, Л., 1989, «Модель внутренней переменной для горячей обработки металлов», Int. Дж. Пластичность, 5 (2), стр. 95–130.
  10. ^ М.А. Майнер, «Совокупные повреждения при усталости», Журнал прикладной механики, вып. 12, стр. 159-164, 1945 г.
  11. ^ LF Coffin, «Проблема усталости от термического напряжения в аустенитных сталях», Специальная техническая публикация 165, ASTM, 1954, стр. 31
  12. ^ LF Coffin, «Исследование воздействия циклических термических напряжений на пластичный металл», Trans. ASME, 76, 931–950 (август 1954 г.).
  13. ^ С. С. Мэнсон, «Поведение материалов в условиях термического напряжения», Труды симпозиума по теплопередаче, Институт инженерных исследований Мичиганского университета, Анн-Арбор, Мичиган, стр. 9–75, 1953.
  14. ^ Даулинг, штат Невада, «Механическое поведение материалов», 2-е издание, Аппер-Седл-Ривер, Нью-Джерси, 1999.
  15. ^ Баскен, Огайо (1910). «Показательный закон испытания на выносливость». Труды Американского общества испытаний и материалов. 10: 625–630.
  16. ^ Энгельмайер, В., «Усталостный ресурс паяных соединений безвыводного держателя чипа во время циклического включения», «Компоненты, гибриды и технологии производства», IEEE Transactions, том 6, № 3, стр. 232-237, сентябрь 1983 г.
  17. ^ Уайлд, Р.Н., «Некоторые усталостные свойства припоев и паяных соединений», IBM Tech. Репортаж 73Z000421, январь 1973 г.
  18. ^ Дарво, Р., 1997, «Модель усталостного срока службы паяных соединений», в книге «Проектирование и надежность припоя и паяльных соединений», Труды TMS, Общество минералов, металлов и материалов , Орландо, Флорида, февраль 1997 г.
  19. ^ Дарво, Р. (2000) Влияние методологии моделирования на корреляцию роста трещин в паяных соединениях. Конференция по электронным компонентам и технологиям, 2000 г., IEEE, стр. 158–169.
  20. ^ Йе, Юмин и др. «Оценка надежности корпуса BGA двусторонней сборки». Упаковка высокой плотности и микросистемная интеграция, 2007. HDP'07. Международный симпозиум о. ИИЭР, 2007 г.
  21. ^ Мейфунас, М. и др. «Измерение и прогнозирование надежности сборок двусторонних массивов». Конференция по электронным компонентам и технологиям, 2003 г. Материалы. 53-й. ИИЭР, 2003 г.
  22. ^ https://www.dfrsolutions.com/hubfs/Developing%20Damage%20Models%20for%20Solder%20Joints%20Expose%20to%20Complex%20Stress%20States.pdf , Хиллман, К., «Разработка моделей повреждений для открытых паяных соединений». к сложным стрессовым состояниям: влияние заливки, Покрытие, зеркальное отображение BGA и защита от усталости паяных соединений», Труды EMPC, Варшава, Польша, сентябрь 2017 г.
  23. ^ https://www.dfrsolutions.com/hubfs/DfR_Solutions_Website/Resources-Archived/Publications/2005-2007/2006_Blattau_IPC_working.pdf [ только URL-адрес PDF ]
  24. ^ Перейти обратно: а б Сайед, А., «Модели прогнозирования срока службы паяных соединений SnAgCu на основе плотности энергии и термической усталости», ECTC 2004, стр. 737-746 - исправлено.
  25. ^ Норрис, К.К. и А.Х. Ландцберг. «Надежность соединений с контролируемым разрушением» Журнал исследований и разработок IBM 13, вып. 3 (1969): 266–271.
  26. ^ «Предоставление большего, чем просто Мур: ускоренное тестирование надежности и анализ рисков для передовых электронных корпусов» (PDF) . 2014.
  27. ^ С. Кнехт; Л. Фокс, «Интегрированная ползучесть матрицы: применение для ускоренных испытаний и прогнозирования срока службы», в книге «Теория и приложения надежности паяльных соединений», Дж. Х. Лау, под ред. Нью-Йорк: Ван Ностранд Рейнхольд, 1991, гл. 16.
  28. ^ Ли, WW; Нгуен, LT; Сельвадурай, Г.С., «Модели усталости паяных соединений: обзор и применимость к корпусам размером с чип». Надежность микроэлектроники 40 (2000) 231-244, 1999.
  29. ^ Стейнберг, Д.С. «Анализ вибрации электронного оборудования». Джон Уайли и сыновья, 2000.
  30. ^ https://www.dfrsolutions.com/hubfs/Resources/Guarantee-Reliability-with-Vibration-Simulation-and-Testing.pdf . [ только URL-адрес PDF ]

Дальнейшее чтение

[ редактировать ]
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 9b751e99dbe2c0ff5290d78844ca6477__1689997080
URL1:https://arc.ask3.ru/arc/aa/9b/77/9b751e99dbe2c0ff5290d78844ca6477.html
Заголовок, (Title) документа по адресу, URL1:
Solder fatigue - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)