Габриэле Веццози
Габриэле Веццози — итальянский математик, родился во Флоренции, Италия. Его основной интерес — алгебраическая геометрия .
Веццози получил степень магистра физики во Флорентийском университете под руководством Александра Виноградова и степень доктора математики в Высшей нормальной школе под Пизы руководством Анджело Вистоли . Его первые работы были посвящены дифференциальному исчислению над коммутативными кольцами , теории пересечений , ( эквивариантной ) алгебраической K-теории , мотивной теории гомотопий и существованию векторных расслоений на сингулярных алгебраических поверхностях .
Примерно в 2001–2002 годах он начал сотрудничество с Бертраном Тёном . Вместе они создали гомотопическую алгебраическую геометрию (HAG), [1] [2] [3] наиболее важной частью которой является производная алгебраическая геометрия (DAG), [4] что на сегодняшний день является мощной и широко распространенной теорией. [5] [6] Чуть позже эта теория была пересмотрена и значительно расширена Якобом Лурье .
Совсем недавно Веццози вместе с Тони Пантевом , Бертраном Тоеном и Мишелем Вакье определили производную версию симплектических структур. [7] и изучил важные свойства и примеры (важным примером являются Кая Беренда ) теории симметричных препятствий ; в дальнейшем вместе с Дэмиеном Калаком эти авторы представили и изучили производную версию пуассоновских и коизотропных структур. [8] с приложениями к квантованию деформации . [9]
В последнее время Тоен и Веццози (частично в сотрудничестве с Энтони Бланом и Марко Робало) перешли к приложениям производной и некоммутативной геометрии к арифметической геометрии, особенно к Спенсера Блоха гипотезе о проводнике . [10] [11] [12]
Веццози также определил производную версию квадратичных форм и в сотрудничестве с Бенджамином Хеннионом и Мауро Порта доказал очень общий формальный результат склеивания вдоль нелинейных флагов. [13] с намеками на применение к пока еще гипотетической геометрической программе Ленглендса для многообразий размерности больше 1. Вместе с Бенджамином Антио Веццози доказал теорему Хохшильда – Костанта – Розенберга (HKR) для многообразий размерности p в характеристике p. [14]
В 2015 году он организовал семинар по производной геометрии в Обервольфахе. [15] в Научно-исследовательском институте математических наук Обервольфаха в Германии и является организатором односеместровой тематической программы в Научно-исследовательском институте математических наук в Беркли, Калифорния, в 2019 году по производной алгебраической геометрии . [6]
Веццози провел свою карьеру в Пизе , Флоренции , Болонье и Париже , у него было три аспиранта (Шург, Порта и Мелани) и он является профессором Флорентийского университета (Италия).
Ссылки [ править ]
- ^ Тоен, Бертран ; Веццози, Габриэле (2005). «Гомотопическая алгебраическая геометрия I: теория топоса» . Достижения в математике . 193 (2): 257–372. arXiv : математика/0207028 . дои : 10.1016/j.aim.2004.05.004 . S2CID 119131806 .
- ^ Тоен, Бертран ; Веццози, Габриэле (2008). «ХАГ II». Мемуары Американского математического общества . 193 (902): 1–228.
- ^ «Запись в ncatlab: Гомотопическая алгебраическая геометрия» . нкатлаб . Проверено 10 февраля 2018 г.
- ^ «Запись в ncatlab: Производная алгебраическая геометрия» . нкатлаб .
- ^ «Гарвардский учебный семинар DAG» . Проверено 10 февраля 2018 г.
- ↑ Перейти обратно: Перейти обратно: а б ИИГС. «Программа «Производная алгебраическая геометрия» » . ИИГС . Проверено 19 апреля 2018 г.
- ^ Пантев, Тони; Тун, Бертран; Вакье, Майкл; Веццози, Габриэле (2013). «Смещенные симплектические структуры». Паб. Математика. ИХЕС . 17 (1): 271–328. arXiv : 1111.3209 . дои : 10.1007/s10240-013-0054-1 . S2CID 11246087 .
- ^ Калак, Дэмиен; Пантев, Тони; Тоен, Бертран; Вакье, Мишель; Веццози, Габриэле (2017). «Смещенные пуассоновские структуры и квантование деформации». Журнал топологии . 10 (2): 483–584. arXiv : 1506.03699 . дои : 10.1112/topo.12012 . S2CID 117757610 .
- ^ Тоэн, Бертран . «Производная алгебраическая геометрия и квантование деформации» (PDF) . ICM-разговор (2014) . Проверено 10 февраля 2018 г.
- ^ Блан, Энтони; Робало, М.; Тоен, Б.; Веццози, Габриэле (2016). «Мотивационные реализации категорий сингулярности и исчезающих циклов». arXiv : 1607.03012 [ math.AG ].
- ^ Тоен, Бертран ; Веццози, Габриэле (2017). «Формула следов для dg-категорий и гипотеза проводника Блоха I». arXiv : 1710.05902 [ math.AG ].
- ^ Веццози, Габриэле. «Приложения некоммутативной алгебраической геометрии к арифметической геометрии» . Канал ИХЭС — YouTube . Проверено 18 апреля 2018 г.
- ^ Хеннион, Бенджамин; Порта, Мауро; Веццози, Габриэле (2016). «Формальная склейка нелинейных флагов». arXiv : 1607.04503 [ math.AG ].
- ^ Антио, Б.; Веццози, Г. (2017). «Замечание к теореме Хохшильда – Костанта – Розенберга в характеристике p ». arXiv : 1710.06039 [ math.AG ].
- ^ Семинар МФО. «Семинар MFO, Производная геометрия» . МФО . Проверено 18 апреля 2018 г.