Отмена
Эта статья нуждается в дополнительных цитатах для проверки . ( сентябрь 2017 г. ) |
Отмена — это математический процесс, используемый для удаления подвыражений из математического выражения , когда это удаление не меняет смысла или значения выражения, поскольку подвыражения имеют равные и противоположные эффекты. [1] Например, можно записать в наименьшей форме путем вычитания общих делителей числителя дробь и знаменателя . [2] Другой пример: если a × b = a × c , то мультипликативный член a можно исключить, если a ≠0, что приведет к эквивалентному выражению b = c ; это эквивалентно делению . на
Отмена
[ редактировать ]Если подвыражения не идентичны, их все же можно частично отменить. Например, в простом уравнении 3 + 2 y = 8 y обе части на самом деле содержат 2 y (поскольку 8 y — это то же самое, что 2 y + 6 y ). Следовательно, 2 y с обеих сторон можно сократить, оставив 3 = 6 y или y = 0,5. Это эквивалентно вычитанию 2 y из обеих частей.
Иногда сокращение может привести к ограниченным изменениям или дополнительным решениям уравнения . Например, учитывая неравенство ab ≥ 3 b , похоже, что b в обеих частях можно сократить, чтобы получить a ≥ 3 в качестве решения. Но такая «наивная» отмена будет означать, что мы не получим все решения (наборы ( a, b ), удовлетворяющие неравенству). Это связано с тем, что если бы b было отрицательным числом , то деление на отрицательное изменило бы отношение ≥ на отношение ≤. Например, хотя 2 больше 1, –2 меньше –1. Кроме того, если бы b было равно нулю , то ноль раз, когда что-либо будет равно нулю, и сокращение в этом случае означало бы деление на ноль , что невозможно сделать. Таким образом, на самом деле, хотя отмена и работает, но правильная отмена приведет нас к трем наборам решений, а не только к одному, которое, как мы думали, у нас есть. Это также скажет нам, что наше «наивное» решение является решением только в некоторых случаях, а не во всех случаях:
- Если b > 0: мы можем сократить число и получить a ≥ 3.
- Если b < 0:, то сокращение вместо этого дает a ≤ 3, потому что в этом случае нам пришлось бы обратить соотношение.
- Если b равно нулю: тогда уравнение верно для любого значения a , потому что обе части будут равны нулю и 0 ≥ 0.
Поэтому может потребоваться некоторая осторожность, чтобы гарантировать, что отмена выполняется правильно и ни одно решение не будет упущено из виду или неверно. Наше простое неравенство имеет три набора решений:
- b > 0 и a ≥ 3. (Например, b = 5 и a = 6 — это решение, потому что 6 x 5 равно 30, а 3 x 5 равно 15 и 30 ≥ 15)
или - b < 0 и a ≤ 3 (например, b = –5 и a = 2 – это решение, потому что 2 x (–5) равно –10, а 3 x (–5) равно –15 и –10 ≥ –15)
или - b = 0 (и a может быть любым числом) (потому что все, что x ноль ≥ 3 x ноль)
- b > 0 и a ≥ 3. (Например, b = 5 и a = 6 — это решение, потому что 6 x 5 равно 30, а 3 x 5 равно 15 и 30 ≥ 15)
Наше «наивное» решение ( a ≥ 3) также иногда может быть неверным. Например, если b = –5, то a = 4 не является решением, даже если 4 ≥ 3, поскольку 4 × (–5) равно –20, а 3 x (–5) равно –15, а –20 не равно ≥ –15.
В продвинутой и абстрактной алгебре и бесконечных рядах
[ редактировать ]В более продвинутой математике сокращение может использоваться в контексте бесконечных рядов , члены которых можно сокращать, чтобы получить конечную сумму или сходящийся ряд . термин телескопирование В этом случае часто используется . Часто требуется значительная осторожность и предотвращение ошибок, чтобы гарантировать, что исправленное уравнение будет действительным, или установить границы , в которых оно будет действительным, из-за природы таких рядов.
Связанные понятия и использование в других областях
[ редактировать ]В вычислительной науке сокращение часто используется для повышения точности и времени выполнения алгоритмов числовых .
См. также
[ редактировать ]Ссылки
[ редактировать ]- ^ «Как отменить обучение основам алгебры» . WonderHowTo . Проверено 12 августа 2022 г.
- ^ «Определение и примеры отмены | определить отмену - Алгебра 1 - Бесплатный математический словарь онлайн» . www.icoachmath.com . Проверено 12 августа 2022 г.