Эконометрическая модель
Эконометрические модели — это статистические модели, используемые в эконометрике . Эконометрическая модель определяет статистическую взаимосвязь, которая, как полагают, существует между различными экономическими величинами, относящимися к конкретному экономическому явлению. Эконометрическая модель может быть получена из детерминистской экономической модели с учетом неопределенности или из экономической модели, которая сама по себе является стохастической . Однако возможно также использование эконометрических моделей, не привязанных к какой-либо конкретной экономической теории. [1]
Простым примером эконометрической модели является модель, которая предполагает, что ежемесячные расходы потребителей линейно зависят от доходов потребителей в предыдущем месяце. Тогда модель будет состоять из уравнения
где C t — потребительские расходы в месяце t , Y t -1 — доход за предыдущий месяц, а e t — ошибка, измеряющая степень, в которой модель не может полностью объяснить потребление. Тогда одна из задач специалиста по эконометрике — получить оценки параметров a и b ; эти расчетные значения параметров, когда они используются в уравнении модели, позволяют делать прогнозы будущих значений потребления в зависимости от дохода за предыдущий месяц.
Формальное определение
[ редактировать ]В эконометрике , как и в статистике вообще, предполагается, что анализируемые величины можно рассматривать как случайные величины . В таком случае эконометрическая модель представляет собой набор совместных распределений вероятностей , которым должно принадлежать истинное совместное распределение вероятностей изучаемых переменных. В случае, когда элементы этого множества могут быть проиндексированы конечным числом вещественных параметров , модель называется параметрической моделью ; в противном случае это непараметрическая или полупараметрическая модель . Большая часть эконометрики — это изучение методов выбора моделей, их оценки и выполнения на их основе выводов .
Наиболее распространенные эконометрические модели являются структурными , поскольку они передают причинную и контрфактическую информацию. [2] и используются для оценки политики. Например, уравнение, моделирующее потребительские расходы на основе дохода, можно использовать, чтобы увидеть, какое потребление будет зависеть от любого из различных гипотетических уровней дохода, только один из которых (в зависимости от выбора налогово-бюджетной политики ) в конечном итоге произойдет на самом деле.
Базовые модели
[ редактировать ]Некоторые из распространенных эконометрических моделей:
- Линейная регрессия
- Обобщенные линейные модели
- Probit
- Логит
- Товит
- АРИМА
- Векторная авторегрессия
- Коинтеграция
- Опасность
Использование в разработке политики
[ редактировать ]Комплексные модели макроэкономических отношений используются центральными банками и правительствами для оценки и направления экономической политики. Одной из известных эконометрических моделей такого рода является эконометрическая модель Федерального резервного банка .
См. также
[ редактировать ]Ссылки
[ редактировать ]- ^ Симс, Кристофер А. (1980). «Макроэкономика и реальность». Эконометрика . 48 (1): 1–48. CiteSeerX 10.1.1.163.5425 . дои : 10.2307/1912017 . JSTOR 1912017 .
- ^ Перл, Дж. (2000). Причинность: модели, рассуждения и выводы . Нью-Йорк: Издательство Кембриджского университета. ISBN 0521773628 .
Дальнейшее чтение
[ редактировать ]- Астериу, Димитрос; Холл, Стивен Г. (2011). «Классическая модель линейной регрессии». Прикладная эконометрика (второе изд.). Пэлгрейв Макмиллан. стр. 29–91. ISBN 978-0-230-27182-1 .
- Дэвидсон, Рассел; Джеймс Г. Маккиннон (1993). Оценка и вывод в эконометрике . Издательство Оксфордского университета. ISBN 0-19-506011-3 .
- Грейнджер, Клайв (1991). Моделирование экономических серий: Чтения по эконометрической методологии . Издательство Оксфордского университета. ISBN 0-19-828736-4 .
- Пэган, Адриан; Аман Улла (1999). Непараметрическая эконометрика . Издательство Кембриджского университета. ISBN 0-521-58611-9 .
- Педаче, Роберто (2013). «Построение классической модели линейной регрессии». Эконометрика для чайников . Хобокен, Нью-Джерси: Уайли. стр. 59–134. ISBN 978-1-118-53384-0 .