Jump to content

Выбор модели

Выбор модели — это задача выбора модели из числа различных кандидатов на основе критерия производительности, чтобы выбрать лучшую. [1] В контексте машинного обучения и, в более общем смысле, статистического анализа , это может быть выбор статистической модели из набора моделей-кандидатов на основе данных. В простейших случаях рассматривается уже существующий набор данных. Однако задача может также включать в себя разработку экспериментов таким образом, чтобы собранные данные хорошо подходили для решения проблемы выбора модели. Учитывая возможные модели со схожей предсказательной или объяснительной силой, простейшая модель, скорее всего, будет лучшим выбором (« бритва Оккама» ).

Кониси и Китагава (2008 , стр. 75) утверждают: «Большинство проблем статистического вывода можно считать проблемами, связанными со статистическим моделированием». В связи с этим Кокс (2006 , стр. 197) сказал: «Как осуществляется перевод предметной задачи в статистическую модель, часто является наиболее важной частью анализа».

Выбор модели может также относиться к проблеме выбора нескольких репрезентативных моделей из большого набора вычислительных моделей с целью принятия решений или оптимизации в условиях неопределенности. [2]

В машинном обучении алгоритмические подходы к выбору модели включают выбор признаков , оптимизацию гиперпараметров и теорию статистического обучения .

Введение [ править ]

Цикл научных наблюдений.

В своих самых основных формах выбор модели является одной из фундаментальных задач научного исследования . Определение принципа, объясняющего серию наблюдений, часто напрямую связано с математической моделью, предсказывающей эти наблюдения. Например, когда Галилей проводил эксперименты на наклонной плоскости , он продемонстрировал, что движение шаров соответствует параболе, предсказанной его моделью. [ нужна ссылка ] .

Как можно вообще выбрать лучшую модель из бесчисленного множества возможных механизмов и процессов, которые могли бы произвести данные? Обычно используемый математический подход делает выбор между набором возможных моделей; этот набор должен быть выбран исследователем. простые модели, такие как полиномы , по крайней мере, на начальном этапе. Часто используются [ нужна ссылка ] . Бернем и Андерсон (2002) на протяжении всей своей книги подчеркивают важность выбора моделей, основанных на здравых научных принципах, таких как понимание феноменологических процессов или механизмов (например, химических реакций), лежащих в основе данных.

После того, как набор моделей-кандидатов выбран, статистический анализ позволяет нам выбрать лучшую из этих моделей. Что подразумевается под лучшим, является спорным. Хорошая техника выбора модели позволит сбалансировать ее соответствие с простотой. Более сложные модели смогут лучше адаптировать свою форму к данным (например, полином пятого порядка может точно соответствовать шести точкам), но дополнительные параметры могут не представлять ничего полезного. (Возможно, эти шесть точек на самом деле просто случайно распределены вокруг прямой линии.) Степень соответствия обычно определяется с использованием подхода отношения правдоподобия или его приближения, что приводит к тесту хи-квадрат . Сложность обычно измеряется путем подсчета количества параметров в модели.

Методы выбора модели можно рассматривать как оценку некоторой физической величины, например вероятности того, что модель предоставит данные данные. Смещение являются важными и дисперсия показателями качества этой оценки; эффективность также часто учитывается.

Стандартным примером выбора модели является подбор кривой , где, учитывая набор точек и другие базовые знания (например, точки являются результатом выборок iid ), мы должны выбрать кривую, описывающую функцию, сгенерировавшую точки.

Два направления выбора модели [ править ]

Есть две основные цели в умозаключении и обучении на данных. Один из них предназначен для научных открытий, также называемых статистическим выводом, понимания основного механизма генерации данных и интерпретации природы данных. Другая цель обучения на основе данных — прогнозирование будущих или невидимых наблюдений, также называемое статистическим прогнозированием. Во второй цели специалист по данным не обязательно заботится о точном вероятностном описании данных. Конечно, можно заинтересоваться и в том, и в другом направлении.

В соответствии с двумя разными целями выбор модели также может иметь два направления: выбор модели для вывода и выбор модели для прогнозирования. [3] Первое направление – определить лучшую модель данных, которая предпочтительно обеспечит надежную характеристику источников неопределенности для научной интерпретации. Для этой цели очень важно, чтобы выбранная модель не была слишком чувствительна к размеру выборки. Соответственно, подходящим понятием для оценки выбора модели является согласованность выбора, означающая, что наиболее надежный кандидат будет последовательно выбран при наличии достаточного количества выборок данных.

Второе направление — выбрать модель в качестве механизма, обеспечивающую превосходные прогнозные характеристики. Однако в последнем случае выбранная модель может просто стать счастливым победителем среди нескольких близких конкурентов, однако прогнозные характеристики все равно могут быть максимально возможными. Если да, то выбор модели подходит для достижения второй цели (прогноза), но использование выбранной модели для понимания и интерпретации может быть крайне ненадежным и вводящим в заблуждение. [3] Более того, для очень сложных моделей, выбранных таким образом, даже прогнозы могут оказаться необоснованными для данных, лишь незначительно отличающихся от тех, на которых был сделан выбор. [4]

помогающие выбрать набор моделей- кандидатов , Методы

Критерии [ править ]

Ниже приведен список критериев выбора модели. Наиболее часто используемыми информационными критериями являются (i) информационный критерий Акаике и (ii) фактор Байеса и/или байесовский информационный критерий (который в некоторой степени приближается к фактору Байеса), см. Стойка и Селен (2004) для обзора.

Среди этих критериев перекрестная проверка обычно является наиболее точной и самой дорогой в вычислительном отношении для задач контролируемого обучения. [ нужна ссылка ]

Бернем и Андерсон (2002 , §6.3) говорят следующее:

Существует множество методов выбора модели. Однако с точки зрения статистической эффективности метода и предполагаемого контекста его использования существует только два различных класса методов: они были названы эффективными и последовательными . (...) В соответствии с частотной парадигмой выбора модели обычно существует три основных подхода: (I) оптимизация некоторых критериев выбора, (II) проверка гипотез и (III) специальные методы.

См. также [ править ]

Примечания [ править ]

  1. ^ Хасти, Тибширани, Фридман (2009). Элементы статистического обучения . Спрингер. п. 195. {{cite book}}: CS1 maint: несколько имен: список авторов ( ссылка )
  2. ^ Ширанги, Мехрдад Г.; Дурлофски, Луи Дж. (2016). «Общий метод выбора репрезентативных моделей для принятия решений и оптимизации в условиях неопределенности». Компьютеры и геонауки . 96 : 109–123. Бибкод : 2016CG.....96..109S . дои : 10.1016/j.cageo.2016.08.002 .
  3. ^ Jump up to: Перейти обратно: а б Дин, Цзе; Тарох, Вахид; Ян, Юхонг (2018). «Методы выбора модели: обзор» . Журнал обработки сигналов IEEE . 35 (6): 16–34. arXiv : 1810.09583 . Бибкод : 2018ISPM...35f..16D . дои : 10.1109/MSP.2018.2867638 . ISSN   1053-5888 . S2CID   53035396 .
  4. ^ Су, Дж.; Варгас, Д.В.; Сакурай, К. (2019). «Однопиксельная атака для обмана глубоких нейронных сетей». Транзакции IEEE в эволюционных вычислениях . 23 (5): 828–841. arXiv : 1710.08864 . дои : 10.1109/TEVC.2019.2890858 . S2CID   2698863 .
  5. ^ Дин, Дж.; Тарох, В.; Ян, Ю. (июнь 2018 г.). «Соединение AIC и BIC: новый критерий авторегрессии» . Транзакции IEEE по теории информации . 64 (6): 4024–4043. arXiv : 1508.02473 . дои : 10.1109/TIT.2017.2717599 . ISSN   1557-9654 . S2CID   5189440 .
  6. ^ Цао, Мин (2023). «Выбор модели регрессии с помощью логарифмического отношения правдоподобия и критерия ограниченного минимума». Канадский статистический журнал . arXiv : 2107.08529 . дои : 10.1002/cjs.11756 . S2CID   236087375 .

Ссылки [ править ]

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 4c05242ad23b24f78714467b239bda3e__1702440240
URL1:https://arc.ask3.ru/arc/aa/4c/3e/4c05242ad23b24f78714467b239bda3e.html
Заголовок, (Title) документа по адресу, URL1:
Model selection - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)