Диапазон (статистика)
В описательной статистике диапазон интервала набора данных — это размер самого узкого , который содержит все данные.Он рассчитывается как разница между наибольшим и наименьшим значениями, [1] результат вычитания выборочного максимума и минимума . Он выражается в тех же единицах , что и данные. Этот диапазон указывает на статистическую дисперсию . Поскольку он зависит только от двух наблюдений, он наиболее полезен для представления дисперсии небольших наборов данных. [2]
Для непрерывных случайных величин IID [ править ]
Для n независимых и одинаково распределенных непрерывных случайных величин X 1 , X 2 , ..., X n с кумулятивной функцией распределения G( x ) и функцией плотности вероятности g( x ), пусть T обозначает диапазон их значений, то есть , T= max( X 1 , X 2 , ..., X n )-min( X 1 , X 2 , ..., X n ).
Распространение [ править ]
Диапазон T имеет кумулятивную функцию распределения. [3] [4]
Гамбель отмечает, что «красота этой формулы полностью омрачена тем фактом, что, вообще говоря, мы не можем выразить G ( x + t ) через G ( x ), и что численное интегрирование является длительным и утомительным». [3] : 385
Если распределение каждого X i ограничено справа (или слева), то асимптотическое распределение диапазона равно асимптотическому распределению наибольшего (наименьшего) значения. Для более общих распределений асимптотическое распределение можно выразить как функцию Бесселя . [3]
Моменты [ править ]
Средний диапазон определяется выражением [5]
где x ( G ) — обратная функция. В случае, когда каждый из X i имеет стандартное нормальное распределение , средний диапазон определяется выражением [6]
Для непрерывных случайных величин, не относящихся к IID [ править ]
Для n неидентично распределенных независимых непрерывных случайных величин X 1 , X 2 , ..., X n с кумулятивными функциями распределения G 1 ( x ), G 2 ( x ), ..., G n ( x ) и функциями плотности вероятности g 1 ( x ), g 2 ( x ), ..., g n ( x ), диапазон имеет кумулятивную функцию распределения [4]
Для дискретных случайных величин IID [ править ]
Для n независимых и одинаково распределенных дискретных случайных величин X 1 , X 2 , ..., X n с кумулятивной функцией распределения G ( x ) и функцией массы вероятности g ( x ) диапазон X i представляет собой диапазон выборки размер n из популяции с функцией распределения G ( x ). мы можем предположить Без ограничения общности , что носитель каждого X i равен {1,2,3,..., N }, где N — целое положительное число или бесконечность. [7] [8]
Распространение [ править ]
Диапазон имеет функцию массы вероятности [7] [9] [10]
Пример [ править ]
Если мы предположим, что g ( x ) = 1/ N , дискретное равномерное распределение для всех x , то мы найдем [9] [11]
Вывод [ править ]
Вероятность наличия определенного значения диапазона t может быть определена путем сложения вероятностей наличия двух выборок, отличающихся на t , и каждой другой выборки, имеющей значение между двумя крайними значениями.Вероятность того, что одна выборка будет иметь значение x, равна . Вероятность того, что другое значение t будет больше x, равна:
Вероятность всех других значений, лежащих между этими двумя крайностями, равна:
Объединение трех вместе дает:
Сопутствующие количества [ править ]
Диапазон представляет собой конкретный пример статистики заказов . В частности, диапазон является линейной функцией статистики порядка, что подводит его к области L-оценки .
См. также [ править ]
Ссылки [ править ]
- ^ Джордж Вудбери (2001). Введение в статистику . Cengage Обучение. п. 74. ИСБН 0534377556 .
- ^ Карин Вильджоэн (2000). Элементарная статистика: Том 2 . Пирсон Южная Африка. стр. 100-1 7–27. ISBN 186891075X .
- ^ Jump up to: а б с Э. Дж. Гамбель (1947). «Распределение ареала» . Анналы математической статистики . 18 (3): 384–412. дои : 10.1214/aoms/1177730387 . JSTOR 2235736 .
- ^ Jump up to: а б Цимашенко И.; Ноттенбелт, В.; Харрисон, П. (2012). «Управление изменчивостью в системах разделения-слияния». Методы и приложения аналитического и стохастического моделирования (PDF) . Конспекты лекций по информатике. Том. 7314. с. 165. дои : 10.1007/978-3-642-30782-9_12 . ISBN 978-3-642-30781-2 .
- ^ Х.О. Хартли ; Х.А. Дэвид (1954). «Универсальные границы среднего диапазона и экстремальных наблюдений» . Анналы математической статистики . 25 (1): 85–99. дои : 10.1214/aoms/1177728848 . JSTOR 2236514 .
- ^ БАК Типпетт (1925). «Об экстремальных особях и диапазоне образцов, взятых из нормальной популяции». Биометрика . 17 (3/4): 364–387. дои : 10.1093/biomet/17.3-4.364 . JSTOR 2332087 .
- ^ Jump up to: а б Эванс, Д.Л.; Лимис, LM; Дрю, Дж. Х. (2006). «Распределение порядковой статистики для дискретных случайных величин с применением к начальной загрузке». ИНФОРМС Журнал по вычислительной технике . 18:19 . дои : 10.1287/ijoc.1040.0105 .
- ^ Ирвинг В. Берр (1955). «Расчет точного выборочного распределения диапазонов из дискретной совокупности» . Анналы математической статистики . 26 (3): 530–532. дои : 10.1214/aoms/1177728500 . JSTOR 2236482 .
- ^ Jump up to: а б Абдель-Аты, Ш.Х. (1954). «Упорядоченные переменные в разрывных распределениях». Статистика Неерландики . 8 (2): 61–82. дои : 10.1111/j.1467-9574.1954.tb00442.x .
- ^ Сиотани, М. (1956). «Порядковая статистика для дискретного случая с численным применением к биномиальному распределению». Летопись Института статистической математики . 8 : 95–96. дои : 10.1007/BF02863574 .
- ^ Пол Р. Райдер (1951). «Распределение диапазона в выборках из дискретной прямоугольной совокупности». Журнал Американской статистической ассоциации . 46 (255): 375–378. дои : 10.1080/01621459.1951.10500796 . JSTOR 2280515 .