Вейвлет

Вейвлет , которая начинается — это волнообразное колебание . с амплитудой с нуля, увеличивается или уменьшается, а затем возвращается к нулю один или несколько раз Вейвлеты называются «краткими колебаниями». Установлена ​​таксономия вейвлетов, основанная на количестве и направлении их импульсов. Вейвлеты обладают особыми свойствами, которые делают их полезными для обработки сигналов .

Сейсмический вейвлет

Например, можно создать вейвлет с частотой средней до и короткой продолжительностью примерно в одну десятую секунды. Если этот вейвлет свернуть с сигналом, созданным при записи мелодии, то полученный сигнал будет полезен для определения того, когда в песне появилась средняя нота «до». Математически вейвлет коррелирует с сигналом, если часть сигнала аналогична. Корреляция лежит в основе многих практических вейвлет-приложений.

В качестве математического инструмента вейвлеты можно использовать для извлечения информации из многих видов данных, включая аудиосигналы и изображения. Для полного анализа данных необходимы наборы вейвлетов. «Дополнительные» вейвлеты разлагают сигнал без пропусков и перекрытий, так что процесс разложения математически обратим. Таким образом, наборы дополнительных вейвлетов полезны в алгоритмах сжатия/декомпрессии на основе вейвлетов , где желательно восстановить исходную информацию с минимальными потерями.

Формально это представление представляет собой вейвлет-серии представление в виде функции, интегрируемой с квадратом, либо полного относительно ортонормированного набора базисных функций , либо сверхполного набора или фрейма векторного пространства для гильбертова пространства функций, интегрируемых с квадратом. . Это достигается посредством согласованных государств .

В классической физике явление дифракции описывается принципом Гюйгенса-Френеля , который рассматривает каждую точку распространяющегося волнового фронта как совокупность отдельных сферических вейвлетов. [1] Характерная картина изгиба наиболее выражена, когда волна от когерентного источника (например, лазера) встречает щель/апертуру, размер которой сопоставим с ее длиной волны . Это происходит из-за сложения или интерференции различных точек волнового фронта (или, что то же самое, каждого вейвлета), которые проходят по путям разной длины к регистрирующей поверхности. Несколько близко расположенных отверстий (например, дифракционная решетка ) могут привести к образованию сложной картины различной интенсивности.

Этимология [ править ]

Слово «вейвлет» десятилетиями использовалось в цифровой обработке сигналов и разведочной геофизике. [2] Эквивалентное французское слово ondelette, означающее «маленькая волна», использовалось Морле и Гроссманном в начале 1980-х годов.

Теория вейвлетов [ править ]

Теория вейвлетов применима к нескольким предметам. Все вейвлет-преобразования можно рассматривать как формы частотно-временного представления для непрерывных (аналоговых) сигналов и поэтому они связаны с гармоническим анализом . Дискретное вейвлет-преобразование (непрерывное во времени) дискретного ( выборочного) сигнала с использованием дискретного времени наборов фильтров диадической (октавной полосы) конфигурации является вейвлет-аппроксимацией этого сигнала. Коэффициенты такого набора фильтров называются коэффициентами сдвига и масштабирования в номенклатуре вейвлетов. Эти наборы фильтров могут содержать фильтры с конечной импульсной характеристикой (FIR) или с бесконечной импульсной характеристикой (IIR). Вейвлеты, образующие непрерывное вейвлет-преобразование (CWT), подчиняются принципу неопределенности анализа Фурье соответствующей теории выборки: учитывая сигнал с некоторым событием в нем, нельзя одновременно присвоить этому событию точную шкалу времени и частотной характеристики. Произведение неопределенностей шкалы времени и частотной характеристики имеет нижнюю границу. Таким образом, в масштабограммы непрерывного вейвлет-преобразования этого сигнала, такое событие отмечает целую область на плоскости шкалы времени, а не только одну точку. Кроме того, базы дискретных вейвлетов можно рассматривать в контексте других форм принципа неопределенности. [3] [4] [5] [6]

Вейвлет-преобразования в целом делятся на три класса: непрерывные, дискретные и на основе множественного разрешения.

непрерывного сдвига и Непрерывное вейвлет-преобразование ( параметры масштабирования )

В непрерывных вейвлет-преобразованиях данный сигнал конечной энергии проецируется на непрерывное семейство частотных диапазонов (или аналогичные подпространства L п функциональное пространство L 2 ( Р ) ). Например, сигнал может быть представлен в каждой полосе частот формы [ f , 2 f ] для всех положительных частот f > 0. Затем исходный сигнал может быть восстановлен путем подходящего интегрирования по всем результирующим частотным компонентам.

Полосы частот или подпространства (поддиапазоны) представляют собой масштабированные версии подпространства в масштабе 1. Это подпространство, в свою очередь, в большинстве ситуаций генерируется сдвигами одной производящей функции ψ в L 2 ( R ), материнский вейвлет . Для примера полосы частот масштаба один [1, 2] эта функция равна

с (нормализованной) функцией sinc . Это, Мейер и два других примера материнских вейвлетов:

Мейер
Морле
Мексиканская шляпа

Подпространство масштаба a или частотного диапазона [1/ a , 2/ a ] генерируется функциями (иногда называемыми дочерними вейвлетами )

где a положительное значение и определяет масштаб, а b — любое действительное число и определяет сдвиг. Пара ( a , b определяет точку в правой полуплоскости R + × R. )

Тогда проекция функции x на подпространство масштаба a имеет вид

с вейвлет-коэффициентами

Для анализа сигнала x можно собрать вейвлет-коэффициенты в масштабограмму сигнала.

См. список некоторых непрерывных вейвлетов .

Дискретные вейвлет-преобразования (дискретные параметры сдвига и масштабирования, непрерывные времени во )

Вычислительно невозможно проанализировать сигнал, используя все вейвлет-коэффициенты, поэтому можно задаться вопросом, достаточно ли выбрать дискретное подмножество верхней полуплоскости, чтобы иметь возможность восстановить сигнал из соответствующих вейвлет-коэффициентов. Одной из таких систем является аффинная система для некоторых действительных параметров a > 1, b > 0. Соответствующее дискретное подмножество полуплоскости состоит из всех точек ( a м , нет, а м с m , n в Z. ) Соответствующие дочерние вейвлеты теперь задаются как

Достаточное условие восстановления любого сигнала x конечной энергии по формуле

заключается в том, что функции образуют базис L ортонормированный 2 ( Р ).

(непрерывные во времени Дискретные вейвлет-преобразования на основе множественного разрешения )

Вейвлет D4

В любом дискретном вейвлет-преобразовании существует только конечное число вейвлет-коэффициентов для каждой ограниченной прямоугольной области в верхней полуплоскости. Тем не менее, каждый коэффициент требует оценки интеграла. В особых ситуациях этой числовой сложности можно избежать, если масштабированные и сдвинутые вейвлеты образуют анализ с множественным разрешением . Это означает, что должна существовать вспомогательная функция , родительский вейвлет φ в L 2 ( R ), и что a является целым числом. Типичный выбор — a = 2 и b = 1. Самая известная пара родительских и материнских вейвлетов — это 4-отводный вейвлет Добеши . Обратите внимание, что не каждый ортонормированный дискретный вейвлет-базис может быть связан с анализом с множественным разрешением; например, вейвлет Журна не допускает анализа с несколькими разрешениями. [7]

Из вейвлетов матери и отца строятся подпространства

Отец вейвлет сохраняет свойства временной области, в то время как материнские вейвлеты сохраняет свойства частотной области.

Отсюда требуется, чтобы последовательность

формирует анализ L множественный 2 и что подпространства являются ортогональными «разницами» указанной выше последовательности, то есть W m является ортогональным дополнением V m внутри подпространства V m −1 ,

По аналогии с теоремой о выборке можно заключить, что пространство V m с расстоянием выборки 2 м более или менее покрывает полосу частот от 0 до 1/2 м -1 . В качестве ортогонального дополнения W m примерно покрывает полосу [1/2 м −1 , 1/2 м ].

Из этих включений и отношений ортогональности, особенно , следует существование последовательностей и которые удовлетворяют тождествам

так что и
так что Второе тождество первой пары представляет собой уточняющее уравнение для родительского вейвлета φ. Обе пары тождеств составляют основу алгоритма быстрого вейвлет-преобразования .

Из многоразрешительного анализа выводится ортогональное разложение пространства L 2 как

Для любого сигнала или функции это дает представление в базисных функциях соответствующих подпространств в виде
где коэффициенты
и

- причинные Временно вейвлеты

Для обработки временных сигналов в реальном времени важно, чтобы вейвлет-фильтры не обращались к значениям сигналов из будущего, а также чтобы можно было получить минимальные временные задержки. Представления вейвлетов, причинных временем, были разработаны Szu et al. [8] и Линдеберг, [9] причем последний метод также включает в себя рекурсивную по времени реализацию, эффективно использующую память.

Материнский вейвлет [ править ]

Для практических приложений и по соображениям эффективности предпочитают непрерывно дифференцируемые функции с компактной поддержкой в ​​качестве материнского (прототипа) вейвлета (функций). Однако для удовлетворения аналитических требований (в непрерывном WT) и в целом по теоретическим причинам вейвлет-функции выбираются из подпространства пространства Это пространство измеримых по Лебегу функций, которые являются как абсолютно интегрируемыми , так и интегрируемыми с квадратом в том смысле, что

и

Находясь в этом пространстве, можно сформулировать условия нулевого среднего и единицы квадратичной нормы:

является условием нулевого среднего, и
является условием квадратичной нормы один.

Чтобы ψ был вейвлетом для непрерывного вейвлет-преобразования (точное формулирование см. здесь), материнский вейвлет должен удовлетворять критерию допустимости (грубо говоря, своего рода полудифференцируемости), чтобы получить стабильно обратимое преобразование.

Для дискретного вейвлет-преобразования необходимо, по крайней мере, условие, что вейвлет-ряд является представлением идентичности в пространстве L. 2 ( Р ). Большинство конструкций дискретного WT используют мультиразрешающий анализ , который определяет вейвлет с помощью масштабирующей функции. Эта масштабирующая функция сама по себе является решением функционального уравнения.

В большинстве ситуаций полезно ограничить ψ непрерывной функцией с большим числом M исчезающих моментов, т.е. для всех целых чисел m < M

Материнский вейвлет масштабируется (или расширяется) в коэффициент a и переводится (или сдвигается) в коэффициент b , что дает (согласно исходной формулировке Морле):

Для непрерывного WT пара ( a , b ) меняется во всей полуплоскости R + × R ; для дискретного WT эта пара меняется на его дискретном подмножестве, которое также называется аффинной группой .

Эти функции часто ошибочно называют базисными функциями (непрерывного) преобразования. Фактически, как и в случае с непрерывным преобразованием Фурье, в непрерывном вейвлет-преобразовании нет основы. Частотно-временная интерпретация использует немного другую формулировку (по Дельпрату).

Ограничение:

  1. когда a 1 = a и b 1 = b ,
  2. имеет конечный интервал времени

непрерывное время Сравнение с преобразованием Фурье ( )

Вейвлет-преобразование часто сравнивают с преобразованием Фурье , в котором сигналы представляются как сумма синусоид. Фактически преобразование Фурье можно рассматривать как частный случай непрерывного вейвлет-преобразования с выбором материнского вейвлета. .Основное различие в целом заключается в том, что вейвлеты локализованы как по времени, так и по частоте, тогда как стандартное преобразование Фурье локализовано только по частоте . Кратковременное преобразование Фурье (STFT) похоже на вейвлет-преобразование тем, что оно также локализовано по времени и частоте, но существуют проблемы с компромиссом разрешения по частоте и времени.

В частности, предполагая прямоугольную область окна, можно думать о STFT как о преобразовании с немного другим ядром.

где часто можно записать как , где и u соответственно обозначают длину и временное смещение оконной функции. Используя теорему Парсеваля , можно определить энергию вейвлета как
Отсюда квадрат временной опоры окна, смещенного на время u, определяется выражением

и квадрат спектральной опоры окна, действующего на частоте

Умножение на прямоугольное окно во временной области соответствует свертке с функционируют в частотной области, что приводит к появлению ложных артефактов звона в коротких/локализованных временных окнах. С помощью преобразования Фурье с непрерывным временем и эта свертка выполняется с дельта-функцией в пространстве Фурье, что приводит к истинному преобразованию Фурье сигнала. . Оконной функцией может быть какой-либо другой аподизирующий фильтр , например, гауссов . Выбор оконной функции повлияет на ошибку аппроксимации относительно истинного преобразования Фурье.

Произведение временной полосы пропускания ячейки данного разрешения не может быть превышено с помощью STFT. Все базовые элементы STFT поддерживают единую спектральную и временную поддержку для всех временных сдвигов или смещений, тем самым достигая одинакового разрешения во времени для более низких и более высоких частот. Разрешение определяется исключительно шириной выборки.

Напротив, свойства мультиразрешения вейвлет-преобразования обеспечивают большую временную поддержку для более низких частот, сохраняя при этом короткую временную ширину для более высоких частот за счет масштабирующих свойств вейвлет-преобразования. Это свойство расширяет традиционный частотно-временной анализ до анализа в масштабе времени. [10]

Атомы частоты времени STFT (слева) и атомы шкалы времени DWT (справа). Частотно-временные атомы представляют собой четыре различные базисные функции, используемые для STFT (т.е. требуются четыре отдельных преобразования Фурье ). Атомы временной шкалы DWT достигают небольшой временной ширины для высоких частот и хорошей временной ширины для низких частот с помощью одного базисного набора преобразования.

Дискретное вейвлет-преобразование является менее сложным в вычислительном отношении и занимает время O( N ) по сравнению с O( N log N ) для быстрого преобразования Фурье . Это вычислительное преимущество не присуще преобразованию, но отражает выбор логарифмического деления частоты, в отличие от равноотстоящих друг от друга частотных делений БПФ (быстрого преобразования Фурье), которое использует те же базисные функции, что и ДПФ (дискретное преобразование Фурье). . [11] Также важно отметить, что эта сложность применима только тогда, когда размер фильтра не имеет отношения к размеру сигнала. Вейвлет без компактной поддержки , такой как вейвлет Шеннона, потребует O( N 2 ). (Например, логарифмическое преобразование Фурье также существует со сложностью O( N ), но исходный сигнал должен быть логарифмически дискретизирован во времени, что полезно только для определенных типов сигналов. [12] )

Определение вейвлета [ править ]

Вейвлет (или семейство вейвлетов) можно определить различными способами:

Фильтр масштабирования [ править ]

Ортогональный вейвлет полностью определяется масштабирующим фильтром – фильтром нижних частот с конечной импульсной характеристикой (FIR) длиной 2 N и суммой 1. В биортогональных вейвлетах определены отдельные фильтры разложения и реконструкции.

Для анализа с использованием ортогональных вейвлетов фильтр верхних частот рассчитывается как квадратурный зеркальный фильтр нижних частот, а фильтры реконструкции являются временными обратными фильтрами разложения.

Вейвлеты Добеши и Симлета могут быть определены с помощью масштабирующего фильтра.

Функция масштабирования [ править ]

Вейвлеты определяются вейвлет-функцией ψ( t ) (т.е. материнским вейвлетом) и функцией масштабирования φ( t ) (также называемой родительским вейвлетом) во временной области.

Вейвлет-функция по сути представляет собой полосовой фильтр, масштабирование которого для каждого уровня уменьшает вдвое полосу пропускания. Это создает проблему: чтобы охватить весь спектр, потребуется бесконечное количество уровней. Функция масштабирования фильтрует самый низкий уровень преобразования и обеспечивает охват всего спектра. Видеть [13] для подробного объяснения.

Для вейвлета с компактной поддержкой φ( t ) можно считать конечной по длине и эквивалентной масштабирующему фильтру g .

Вейвлеты Мейера можно определить с помощью функций масштабирования.

Вейвлет-функция [ править ]

Вейвлет имеет только представление во временной области как вейвлет-функция ψ( t ).

Например, вейвлеты мексиканской шляпы могут быть определены с помощью вейвлет-функции. См. список нескольких непрерывных вейвлетов .

История [ править ]

Развитие вейвлетов можно связать с несколькими отдельными направлениями мысли, начиная с работы Хаара в начале 20 века. Более поздняя работа Денниса Габора привела к созданию атомов Габора (1946), которые устроены аналогично вейвлетам и применяются для аналогичных целей.

Заметный вклад в теорию вейвлетов с тех пор можно отнести к непрерывного открытию Цвейгом вейвлет-преобразования (CWT) в 1975 году (первоначально называвшегося кохлеарным преобразованием и открытого при изучении реакции уха на звук). [14] Формулировка Пьера Гупийо, Гроссмана и Морле того, что сейчас известно как CWT (1982), ранняя работа Яна-Олова Стрёмберга по дискретным вейвлетам (1983), неортогональный 5/3-отвод Ле Галля – Табатабаи (LGT). блок фильтров с линейной фазой (1988), [15] [16] [17] Ингрид Добеши Ортогональные вейвлеты с компактной поддержкой Малла (1988), неортогональная структура множественного разрешения Али Акансу ( (1989), Биномиальный QMF 1990), частотно-временная интерпретация CWT Натали Дельпра (1991), гармонический вейвлет Ньюленда преобразование (1993) и разделение множеств в иерархических деревьях (SPIHT), разработанное Амиром Саидом совместно с Уильямом А. Перлманом в 1996 году. [18]

Стандарт JPEG 2000 разрабатывался с 1997 по 2000 год комитетом Объединенной группы экспертов по фотографии (JPEG) под председательством Тураджа Эбрахими (впоследствии президента JPEG). [19] В отличие от алгоритма DCT, используемого в исходном формате JPEG , JPEG 2000 вместо этого использует дискретного вейвлет-преобразования алгоритмы (DWT). Он использует вейвлет-преобразование CDF 9/7 (разработанное Ингрид Добеши в 1992 году) для алгоритма сжатия с потерями и набор фильтров дискретного времени Ле Галля-Табатабай (LGT) 5/3 (разработанный Дидье Ле Галлем и Али Дж. Табатабаи в 1988 году) за алгоритм сжатия без потерь . [20] Технология JPEG 2000 , включающая расширение Motion JPEG 2000 , была выбрана в качестве стандарта кодирования видео для цифрового кино в 2004 году. [21]

Хронология [ править ]

Вейвлет - преобразования

Вейвлет — это математическая функция, используемая для разделения заданной функции или сигнала непрерывного времени на различные компоненты масштаба. Обычно каждому компоненту шкалы можно назначить частотный диапазон. Затем каждый компонент масштаба можно изучить с разрешением, соответствующим его масштабу. Вейвлет-преобразование — это представление функции вейвлетами. Вейвлеты представляют собой масштабированные и преобразованные копии (известные как «дочерние вейвлеты») осциллирующей формы конечной длины или быстро затухающей формы (известной как «материнский вейвлет»). Вейвлет-преобразования имеют преимущества перед традиционными преобразованиями Фурье для представления функций, имеющих разрывы и острые пики, а также для точного деконструирования и восстановления конечных, непериодических и /или нестационарных сигналов .

Вейвлет-преобразования подразделяются на дискретные вейвлет-преобразования (DWT) и непрерывные вейвлет-преобразования (CWT). Обратите внимание, что и DWT, и CWT являются преобразованиями непрерывного времени (аналоговыми). Их можно использовать для представления непрерывных (аналоговых) сигналов. CWT работают со всеми возможными масштабами и трансляциями, тогда как DWT используют определенное подмножество масштабов и значений перевода или сетку представления.

Существует большое количество вейвлет-преобразований, каждое из которых подходит для разных приложений. Полный список см. в списке преобразований, связанных с вейвлетами, но наиболее распространенные из них перечислены ниже:

Обобщенные преобразования [ править ]

Существует ряд обобщенных преобразований, частным случаем которых является вейвлет-преобразование. Например, Йосеф Джозеф Сегман ввел масштаб в группу Гейзенберга , породив пространство непрерывного преобразования, которое является функцией времени, масштаба и частоты. CWT представляет собой двумерный срез полученного трехмерного объема в масштабе времени и частоте.

Другим примером обобщенного преобразования является преобразование лирплета , в котором CWT также является двумерным срезом преобразования лирплета.

Важная область применения обобщенных преобразований включает системы, в которых решающее значение имеет высокое разрешение по частоте. Например, темнопольные электронно-оптические преобразования, промежуточные между прямым и обратным пространством, широко используются при гармоническом анализе кластеризации атомов, т. е. при исследовании кристаллов и кристаллических дефектов . [22] Теперь, когда трансмиссионные электронные микроскопы способны предоставлять цифровые изображения с пикометрической информацией об атомной периодичности в наноструктурах всех видов, диапазон распознавания образов [23] и напряжение [24] / метрология [25] приложения для промежуточных преобразований с высоким частотным разрешением (например, кисти [26] и риджлеты [27] ) быстро растет.

Дробное вейвлет-преобразование (FRWT) представляет собой обобщение классического вейвлет-преобразования в областях дробного преобразования Фурье. Это преобразование способно одновременно предоставлять информацию во временной и дробной области и представлять сигналы в плоскости дробно-временной частоты. [28]

Приложения [ править ]

Обычно аппроксимация DWT используется для сжатия данных , если сигнал уже дискретизирован, а CWT — для анализа сигнала . [29] Таким образом, приближение DWT обычно используется в технике и информатике. [30] и CWT в научных исследованиях. [31]

Как и некоторые другие преобразования, вейвлет-преобразования можно использовать для преобразования данных, а затем кодирования преобразованных данных, что приводит к эффективному сжатию. Например, JPEG 2000 — это стандарт сжатия изображений, использующий биортогональные вейвлеты. Это означает, что хотя кадр и сверхполный, но это плотный кадр (см. типы кадров векторного пространства ), и для анализа и синтеза используются одни и те же функции кадра (за исключением сопряжения в случае комплексных вейвлетов), т.е. , как при прямом, так и при обратном преобразовании. Подробнее см. вейвлет-сжатие .

Связанное использование — сглаживание/шумоподавление данных на основе порогового значения вейвлет-коэффициента, также называемого вейвлет-сжатием. Путем адаптивного определения порога вейвлет-коэффициентов, которые соответствуют нежелательным частотным компонентам, могут быть выполнены операции сглаживания и/или шумоподавления.

Вейвлет-преобразования также начинают использоваться в коммуникационных приложениях. Wavelet OFDM — это базовая схема модуляции, используемая в HD-PLC ( технология связи по линиям электропередачи , разработанная Panasonic ), а также в одном из дополнительных режимов, включенных в стандарт IEEE 1901 . Вейвлет OFDM может достигать более глубоких вырезов, чем традиционный FFT OFDM, а вейвлет OFDM не требует защитного интервала (который обычно представляет собой значительные накладные расходы в системах FFT OFDM). [32]

Как представление сигнала [ править ]

Часто сигналы можно представить в виде суммы синусоид. Однако рассмотрим прерывистый сигнал с резким скачком; этот сигнал все еще можно представить как сумму синусоид, но требуется бесконечное число, что является наблюдением, известным как феномен Гиббса . Таким образом, для этого требуется бесконечное число коэффициентов Фурье, что непрактично для многих приложений, таких как сжатие. Вейвлеты более полезны для описания этих сигналов с разрывами из-за их поведения, локализованного во времени (как преобразования Фурье, так и вейвлет-преобразования локализованы по частоте, но вейвлеты обладают дополнительным свойством локализации во времени). Из-за этого многие типы сигналов на практике могут быть неразреженными в области Фурье, но очень разреженными в области вейвлетов. Это особенно полезно при реконструкции сигналов, особенно в популярной в последнее время области измерения сжатых данных . (Обратите внимание, что кратковременное преобразование Фурье (STFT) также локализовано во времени и частоте, но часто возникают проблемы с компромиссом между разрешением и частотой. Вейвлеты являются лучшим представлением сигнала из-за мультиразрешительный анализ .)

Это объясняет, почему вейвлет-преобразования в настоящее время применяются для огромного количества приложений, часто заменяя обычное преобразование Фурье . Этот сдвиг парадигмы произошел во многих областях физики, включая молекулярную динамику , теорию хаоса , [33] ab initio расчеты , астрофизика , гравитационных волн , анализ данных о переходных процессах [34] [35] локализация в матрице плотности , сейсмология , оптика , турбулентность и квантовая механика . Это изменение также произошло в обработке изображений , ЭЭГ , ЭМГ , [36] ЭКГ Анализы , ритмы мозга , анализ ДНК , анализ белков , климатология , анализ сексуальной реакции человека, [37] общая обработка сигналов , распознавание речи , акустика, вибрационные сигналы, [38] компьютерная графика , мультифрактальный анализ и разреженное кодирование . В компьютерном зрении и обработке изображений понятие представления масштабного пространства и операторов производной Гаусса рассматривается как каноническое многомасштабное представление.

Вейвлетное шумоподавление [ править ]

Шумоподавление сигнала с помощью порогового значения вейвлет-преобразования

Предположим, мы измеряем зашумленный сигнал , где представляет сигнал и представляет собой шум. Предполагать имеет разреженное представление в определенном вейвлет-базисе и

Пусть вейвлет-преобразование быть , где - вейвлет-преобразование компонента сигнала и — вейвлет-преобразование шумовой составляющей.

Большинство элементов в равны 0 или близки к 0, и

С ортогональна, задача оценки сводится к восстановлению сигнала в гауссовском шуме . Как разрежена, один из методов состоит в применении модели гауссовой смеси для .

Предположим, что предварительно , где - дисперсия «значимых» коэффициентов и – дисперсия «незначимых» коэффициентов.

Затем , называется коэффициентом усадки, который зависит от предыдущих отклонений и . При установке коэффициентов, которые падают ниже порога сжатия, на ноль, после применения обратного преобразования ожидаемо небольшое количество сигнала теряется из-за предположения о разреженности. Ожидается, что более крупные коэффициенты в первую очередь будут представлять сигнал из-за разреженности, и статистически ожидается, что очень небольшая часть сигнала, хотя и большая часть шума, будет представлена ​​в таких коэффициентах с более низкой величиной... поэтому ожидается, что операция обнуления будет удалить большую часть шума и не так много сигнала. Обычно коэффициенты над порогом не изменяются в ходе этого процесса. Некоторые алгоритмы шумоподавления на основе вейвлетов также могут ослаблять более крупные коэффициенты на основе статистической оценки количества шума, которое, как ожидается, будет удалено в результате такого ослабления.

Наконец, примените обратное вейвлет-преобразование, чтобы получить

сеть Многомасштабная климатическая

Агарвал и др. предложенный расширенный линейный метод на основе вейвлетов [39] и нелинейный [40] методы построения и исследования климата как сложных сетей в разных временных масштабах. Климатические сети, построенные с использованием наборов данных ТПО в разных временных масштабах, показали, что многомасштабный анализ климатических процессов на основе вейвлетов обещает лучшее понимание динамики системы, которую можно упустить, если процессы анализируются только в одном временном масштабе. [41]

Список вейвлетов [ править ]

Дискретные вейвлеты [ править ]

Непрерывные вейвлеты [ править ]

Реальная стоимость [ править ]

Комплексное значение [ править ]

См. также [ править ]

Ссылки [ править ]

  1. ^ Беспроводная связь: принципы и практика, серия «Коммуникационная инженерия и новые технологии Prentice Hall», TS Rappaport, Prentice Hall, 2002, стр. 126.
  2. ^ Рикер, Норман (1953). «Вейвлет-сужение, вейвлет-расширение и контроль сейсмического разрешения». Геофизика . 18 (4): 769–792. Бибкод : 1953Geop...18..769R . дои : 10.1190/1.1437927 .
  3. ^ Мейер, Ив (1992), Вейвлеты и операторы, Кембридж, Великобритания: Издательство Кембриджского университета, ISBN   0-521-42000-8
  4. ^ Чуи, Чарльз К. (1992), Введение в вейвлеты, Сан-Диего, Калифорния: Academic Press, ISBN   0-12-174584-8
  5. ^ Добеши, Ингрид. (1992), Десять лекций по вейвлетам, SIAM, ISBN   978-0-89871-274-2
  6. ^ Акансу, Али Н.; Хаддад, Ричард А. (1992), Разложение сигнала с несколькими разрешениями: преобразования, поддиапазоны и вейвлеты, Бостон, Массачусетс: Academic Press, ISBN   978-0-12-047141-6
  7. ^ Ларсон, Дэвид Р. (2007), Вейвлет-анализ и приложения (см.: Унитарные системы и вейвлет-множества) , Appl. Число. Хармон. Anal., Birkhäuser, стр. 143–171.
  8. ^ Сзу, Гарольд Х.; Телфер, Брайан А.; Ломанн, Адольф В. (1992). «Каузальное аналитическое вейвлет-преобразование». Оптическая инженерия . 31 (9): 1825. Бибкод : 1992OptEn..31.1825S . дои : 10.1117/12.59911 .
  9. ^ Линдеберг, Т. (23 января 2023 г.). «Причинно-временное и рекурсивное во времени масштабно-пространственное представление временных сигналов и прошлого времени» . Биологическая кибернетика . 117 (1–2): 21–59. дои : 10.1007/s00422-022-00953-6 . ПМЦ   10160219 . ПМИД   36689001 .
  10. ^ Маллат, Стефан. «Вейвлет-тур по обработке сигналов. 1998». 250-252.
  11. ^ Руководство для ученых и инженеров по цифровой обработке сигналов Стивена В. Смита, доктора философии. глава 8, уравнение 8-1: http://www.dspguide.com/ch8/4.htm
  12. ^ Хейнс, В.Г. В.; Джонс, Алан Г. (1988). «Логарифмическое преобразование Фурье» (PDF) . Геофизический журнал (92): 171–178. дои : 10.1111/j.1365-246X.1988.tb01131.x . S2CID   9720759 .
  13. ^ «Действительно дружелюбное руководство по вейвлетам – PolyValens» . www.polyvalens.com .
  14. ^ Вайсштейн, Эрик В. «Цвейг, Джордж - из мира научной биографии Эрика Вайсштейна» . scienceworld.wolfram.com . Проверено 20 октября 2021 г.
  15. ^ Салливан, Гэри (8–12 декабря 2003 г.). «Общие характеристики и соображения по проектированию временного поддиапазонного видеокодирования» . МСЭ-Т . Группа экспертов по видеокодированию . Проверено 13 сентября 2019 г.
  16. ^ Бовик, Алан С. (2009). Основное руководство по обработке видео . Академическая пресса . п. 355. ИСБН  9780080922508 .
  17. ^ Галль, Дидье Ле; Табатабай, Али Дж. (1988). «Поддиапазонное кодирование цифровых изображений с использованием симметричных фильтров с коротким ядром и методов арифметического кодирования». ICASSP-88., Международная конференция по акустике, речи и обработке сигналов . С. 761–764 т. 2. дои : 10.1109/ICASSP.1988.196696 . S2CID   109186495 .
  18. ^ Сказал, Амир; Перлман, Уильям А. (июнь 1996 г.). «Новый быстрый и эффективный кодек изображений, основанный на разбиении наборов в иерархических деревьях». Транзакции IEEE по схемам и системам видеотехнологий . 6 (3): 243–250. дои : 10.1109/76.499834 . ISSN   1051-8215 .
  19. ^ Таубман, Дэвид; Марселлин, Майкл (2012). Основы, стандарты и практика сжатия изображений JPEG2000: Основы, стандарты и практика сжатия изображений . Springer Science & Business Media . ISBN  9781461507994 .
  20. ^ Унсер, М.; Блу, Т. (2003). «Математические свойства вейвлет-фильтров JPEG2000» (PDF) . Транзакции IEEE при обработке изображений . 12 (9): 1080–1090. Бибкод : 2003ИТИП...12.1080У . дои : 10.1109/TIP.2003.812329 . ПМИД   18237979 . S2CID   2765169 . Архивировано из оригинала (PDF) 13 октября 2019 г.
  21. ^ Шварц, Чарльз С. (2005). Понимание цифрового кино: Профессиональный справочник . Тейлор и Фрэнсис . п. 147. ИСБН  9780240806174 .
  22. ^ П. Хирш, А. Хоуи, Р. Николсон, Д. В. Пэшли и М. Дж. Уилан (1965/1977) Электронная микроскопия тонких кристаллов (Баттервортс, Лондон / Кригер, Малабар, Флорида) ISBN   0-88275-376-2
  23. ^ П. Фраундорф, Дж. Ван, Э. Манделл и М. Роуз (2006) Цифровые таблицы темного поля, Микроскопия и микроанализ 12 : S2, 1010–1011 (ср. arXiv: cond-mat/0403017 )
  24. ^ Хитч, MJ; Снук, Э.; Килаас, Р. (1998). «Количественное измерение полей смещения и деформации по микрофотографиям HRTEM». Ультрамикроскопия . 74 (3): 131–146. дои : 10.1016/s0304-3991(98)00035-7 .
  25. ^ Мартин Роуз (2006) Измерения расстояния между полосами решетки на изображении HRTEM с использованием цифрового разложения темного поля (Диссертация магистра по физике, Университет Миссури - Сент-Луис)
  26. ^ Ф. Г. Мейер и Р. Р. Койфман (1997) Прикладной и вычислительный гармонический анализ 4 : 147.
  27. ^ AG Flesia, H. Hel-Or , A. Averbuch, EJ Candes , RR Coifman и DL Donoho (2001) Цифровая реализация пакетов ridgelet (Academic Press, Нью-Йорк).
  28. ^ Ши, Дж.; Чжан, Северная Каролина; Лю, Х.-П. (2011). «Новое дробное вейвлет-преобразование и его приложения». наук. Китай Инф. Наука . 55 (6): 1270–1279. дои : 10.1007/s11432-011-4320-x . S2CID   255201598 .
  29. ^ AN Akansu, WA Serdijn и IW Selesnick, Новые приложения вейвлетов: обзор , Physical Communication, Elsevier, vol. 3, выпуск 1, стр. 1–18, март 2010 г.
  30. ^ Ляхов, Павел; Семенова, Наталья; Нагорнов, Николай; Бергерман, Максим; Абдулсалямова, Альбина (14 ноября 2023 г.). «Высокоскоростная обработка вейвлет-изображений методом Винограда с понижением частоты дискретизации» . Математика . 11 (22): 4644. doi : 10.3390/math11224644 . ISSN   2227-7390 . Вейвлеты активно используются для решения широкого круга задач обработки изображений в различных областях науки и техники, например, шумоподавления изображений, реконструкции, анализа, анализа и обработки видео. Методы вейвлет-обработки основаны на дискретном вейвлет-преобразовании с использованием одномерной цифровой фильтрации.
  31. ^ Донг, Лян; Чжан, Шаохуа; Ган, Тяньсию; Цю, Ян; Сун, Циньфэн; Чжао, Юнтао (01 декабря 2023 г.). «Анализ частотных характеристик потенциала трубопровода-почвы в условиях помех от блуждающих токов метрополитена с использованием метода непрерывного вейвлет-преобразования» . Строительство и строительные материалы . 407 : 133453. doi : 10.1016/j.conbuildmat.2023.133453 . ISSN   0950-0618 . S2CID   263317973 .
  32. ^ Стефано Галли; О. Логвинов (июль 2008 г.). «Последние события в стандартизации связи по линиям электропередачи в рамках IEEE». Журнал коммуникаций IEEE . 46 (7): 64–71. дои : 10.1109/MCOM.2008.4557044 . S2CID   2650873 . Обзор предложения P1901 PHY/MAC.
  33. ^ Уотерспун, Т.; и др., др. (2009). «Адаптация к грани хаоса с помощью случайной вейвлетной обратной связи». Дж. Физ. Хим . 113 (1): 19–22. Бибкод : 2009JPCA..113...19W . дои : 10.1021/jp804420g . ПМИД   19072712 .
  34. ^ Эбботт, Бенджамин П.; и др. (Научное сотрудничество LIGO и сотрудничество Virgo) (2016). «Наблюдение гравитационно-волнового переходного процесса GW150914 с минимальными предположениями». Физ. Преподобный Д. 93 (12): 122004. arXiv : 1602.03843 . Бибкод : 2016PhRvD..93l2004A . doi : 10.1103/PhysRevD.93.122004 . S2CID   119313566 .
  35. ^ В. Некула, С. Клименко и Г. Мисельмахер (2012). «Анализ переходных процессов с использованием быстрого частотно-временного преобразования Вильсона-Добеши» . Физический журнал: серия конференций . 363 (1): 012032. Бибкод : 2012JPhCS.363a2032N . дои : 10.1088/1742-6596/363/1/012032 .
  36. ^ Дж. Рафи и др. Особенности извлечения сигналов ЭМГ предплечья для протезирования, Экспертные системы с приложениями 38 (2011) 4058–67.
  37. ^ Дж. Рафи и др. Женские сексуальные реакции с использованием методов обработки сигналов, Журнал сексуальной медицины 6 (2009) 3086–96. (pdf)
  38. ^ Рафи, Дж.; Це, Питер В. (2009). «Использование автокорреляции в вейвлет-коэффициентах для диагностики неисправностей». Механические системы и обработка сигналов . 23 (5): 1554–72. Бибкод : 2009MSSP...23.1554R . дои : 10.1016/j.ymssp.2009.02.008 .
  39. ^ Агарвал, Анкит; Махешваран, Ратинасами; Марван, Норберт; Цезарь, Левке; Куртс, Юрген (ноябрь 2018 г.). «Многомасштабная мера сходства на основе вейвлетов для сложных сетей» (PDF) . Европейский физический журнал Б. 91 (11): 296. Бибкод : 2018EPJB...91..296A . дои : 10.1140/epjb/e2018-90460-6 . eISSN   1434-6036 . ISSN   1434-6028 . S2CID   125557123 .
  40. ^ Агарвал, Анкит; Марван, Норберт; Ратинасами, Махешваран; Мерц, Бруно; Куртс, Юрген (13 октября 2017 г.). «Многомасштабный анализ синхронизации событий для раскрытия климатических процессов: подход, основанный на вейвлетах» . Нелинейные процессы в геофизике . 24 (4): 599–611. Бибкод : 2017NPGeo..24..599A . дои : 10.5194/npg-24-599-2017 . eISSN   1607-7946 . S2CID   28114574 .
  41. ^ Агарвал, Анкит; Цезарь, Левке; Марван, Норберт; Махешваран, Ратинасами; Мерц, Бруно; Куртс, Юрген (19 июня 2019 г.). «Сетевая идентификация и характеристика телекоммуникационных соединений разных масштабов» . Научные отчеты . 9 (1): 8808. Бибкод : 2019НатСР...9.8808А . дои : 10.1038/s41598-019-45423-5 . eISSN   2045-2322 . ПМК   6584743 . ПМИД   31217490 .
  42. ^ Matlab Toolbox – URL: http://matlab.izmiran.ru/help/toolbox/wavelet/ch06_a32.html.
  43. ^ Эрик Хьельмас (1999-01-21) URL-адрес Gabor Wavelets : http://www.ansatt.hig.no/erikh/papers/scia99/node6.html

Дальнейшее чтение [ править ]

Внешние ссылки [ править ]