Сжатие данных

В теории информации , сжатии данных , исходном кодировании , [1] или снижение скорости передачи данных — это процесс кодирования информации с использованием меньшего количества битов , чем исходное представление. [2] Любое конкретное сжатие осуществляется либо с потерями , либо без потерь . Сжатие без потерь уменьшает количество битов за счет выявления и устранения статистической избыточности . Никакая информация не теряется при сжатии без потерь. Сжатие с потерями уменьшает количество битов, удаляя ненужную или менее важную информацию. [3] Обычно устройство, выполняющее сжатие данных, называется кодером, а устройство, выполняющее обращение процесса (декомпрессию), — декодером.

Процесс уменьшения размера файла данных часто называют сжатием данных. В контексте передачи данных это называется исходным кодированием: кодирование выполняется в источнике данных перед их сохранением или передачей. [4] Исходное кодирование не следует путать с канальным кодированием для обнаружения и исправления ошибок или линейным кодированием , средством отображения данных в сигнал.

Сжатие полезно, поскольку оно уменьшает ресурсы, необходимые для хранения и передачи данных. Вычислительные ресурсы потребляются в процессах сжатия и распаковки. Сжатие данных требует компромисса между пространственно-временной сложностью . Например, схема сжатия видео может потребовать дорогостоящего оборудования для достаточно быстрой распаковки видео, чтобы его можно было просмотреть во время распаковки, а возможность полного распаковывания видео перед его просмотром может быть неудобной или требовать дополнительного хранилища. Разработка схем сжатия данных предполагает компромисс между различными факторами, включая степень сжатия, величину вносимых искажений (при использовании сжатия данных с потерями ) и вычислительные ресурсы, необходимые для сжатия и распаковки данных. [5]

Без потерь [ править ]

сжатия данных без потерь Алгоритмы обычно используют статистическую избыточность для представления данных без потери какой-либо информации , поэтому процесс является обратимым. Сжатие без потерь возможно, поскольку большинство реальных данных демонстрируют статистическую избыточность. Например, изображение может иметь области цвета, которые не меняются на протяжении нескольких пикселей; вместо кодирования «красный пиксель, красный пиксель...» данные могут быть закодированы как «279 красных пикселей». Это базовый пример кодирования длин серий ; существует множество схем уменьшения размера файла за счет устранения избыточности.

Методы сжатия Лемпеля -Зива (LZ) являются одними из самых популярных алгоритмов хранения без потерь. [6] DEFLATE — это вариант LZ, оптимизированный по скорости декомпрессии и степени сжатия, но сжатие может быть медленным. В середине 1980-х годов, после работы Терри Уэлча , алгоритм Лемпеля-Зива-Уэлча (LZW) быстро стал методом выбора для большинства систем сжатия общего назначения. LZW используется в изображениях GIF , таких программах, как PKZIP , и аппаратных устройствах, таких как модемы. [7] Методы LZ используют модель сжатия на основе таблиц, в которой записи таблицы заменяются повторяющимися строками данных. Для большинства методов LZ эта таблица генерируется динамически на основе более ранних входных данных. Сама таблица часто кодируется Хаффманом . Подобные грамматические коды могут чрезвычайно эффективно сжимать часто повторяющиеся входные данные, например, коллекцию биологических данных об одном и том же или близкородственных видах, огромную коллекцию документов с разными версиями, интернет-архивы и т. д. Основная задача грамматических кодов — построение контекстно-свободная грамматика, производящая одну строку. Другие практические алгоритмы сжатия грамматики включают Sequitur и Re-Pair .

Самые сильные современные компрессоры без потерь используют вероятностные модели, такие как прогнозирование путем частичного сопоставления . Преобразование Берроуза -Уиллера также можно рассматривать как косвенную форму статистического моделирования. [8] В дальнейшем усовершенствовании прямого использования вероятностного моделирования статистические оценки могут быть связаны с алгоритмом, называемым арифметическим кодированием . Арифметическое кодирование — это более современный метод кодирования, который использует математические вычисления конечного автомата для создания строки закодированных битов из серии символов входных данных. Он может обеспечить превосходное сжатие по сравнению с другими методами, такими как более известный алгоритм Хаффмана. Он использует состояние внутренней памяти, чтобы избежать необходимости выполнять взаимно однозначное сопоставление отдельных входных символов с различными представлениями, использующими целое число бит, и очищает внутреннюю память только после кодирования всей строки символов данных. . Арифметическое кодирование особенно хорошо применяется для задач адаптивного сжатия данных, где статистика варьируется и зависит от контекста, поскольку его можно легко объединить с адаптивной моделью распределения вероятностей входных данных. Ранним примером использования арифметического кодирования была необязательная (но не широко используемая) функция JPEG . Стандарт кодирования изображений [9] С тех пор он применялся в различных других проектах, включая H.263 , H.264/MPEG-4 AVC и HEVC для кодирования видео. [10]

Программное обеспечение для архивирования обычно имеет возможность регулировать «размер словаря», при этом больший размер требует больше оперативной памяти во время сжатия и распаковки, но сжимает сильнее, особенно при повторяющихся шаблонах в содержимом файлов. [11] [12]

Потерянный [ править ]

MP3 , пример формата файла с потерями по сравнению с WAV .

В конце 1980-х годов цифровые изображения стали более распространенными, и появились стандарты сжатия изображений без потерь . В начале 1990-х годов стали широко использоваться методы сжатия с потерями. [13] В этих схемах допускается некоторая потеря информации, поскольку удаление несущественных деталей может сэкономить место для хранения. Существует соответствующий компромисс между сохранением информации и уменьшением размера. Схемы сжатия данных с потерями разработаны на основе исследований того, как люди воспринимают рассматриваемые данные. Например, человеческий глаз более чувствителен к тонким изменениям яркости , чем к изменениям цвета. Сжатие изображений JPEG частично работает за счет округления несущественных битов информации. [14] Эти различия восприятия используются в ряде популярных форматов сжатия, включая психоакустическую для звука и психовизуальную для изображений и видео.

Большинство форм сжатия с потерями основаны на кодировании с преобразованием , особенно на дискретном косинусном преобразовании (DCT). Впервые он был предложен в 1972 году Насиром Ахмедом , который затем разработал рабочий алгоритм вместе с Т. Натараджан и К. Р. Рао в 1973 году, а затем представил его в январе 1974 года. [15] [16] DCT является наиболее широко используемым методом сжатия с потерями и используется в мультимедийных форматах изображений (таких как JPEG и HEIF ), [17] видео (например, MPEG , AVC и HEVC) и аудио (например, MP3 , AAC и Vorbis ).

Сжатие изображений с потерями используется в цифровых камерах для увеличения емкости хранилища. Аналогично, DVD , Blu-ray и потоковое видео используют форматы кодирования видео с потерями . Сжатие с потерями широко используется в видео.

При сжатии звука с потерями методы психоакустики используются для удаления неслышимых (или менее слышимых) компонентов аудиосигнала . Сжатие человеческой речи часто выполняется с помощью еще более специализированных методов; Кодирование речи выделяется как отдельная дисциплина от сжатия звука общего назначения. Кодирование речи используется в интернет-телефонии , например, сжатие звука используется для копирования компакт-дисков и декодируется аудиоплеерами. [8]

Сжатие с потерями может привести к потере генерации .

Теория [ править ]

Теоретическая основа сжатия обеспечивается теорией информации и, более конкретно, теоремой Шеннона о кодировании источника ; теории, специфичные для предметной области, включают алгоритмическую теорию информации для сжатия без потерь и теорию скорости-искажения для сжатия с потерями. Эти области исследований были по существу созданы Клодом Шенноном , опубликовавшим фундаментальные статьи по этой теме в конце 1940-х — начале 1950-х годов. Другие темы, связанные со сжатием, включают теорию кодирования и статистический вывод . [18]

Машинное обучение [ править ]

Существует тесная связь между машинным обучением и сжатием. Система, которая прогнозирует апостериорные вероятности последовательности с учетом всей ее истории, может использоваться для оптимального сжатия данных (путем использования арифметического кодирования выходного распределения). И наоборот, для прогнозирования можно использовать оптимальный компрессор (путем нахождения символа, который сжимается лучше всего, учитывая предыдущую историю). Эта эквивалентность использовалась в качестве оправдания использования сжатия данных в качестве эталона «общего интеллекта». [19] [20] [21]

Альтернативный вид может показать, что алгоритмы сжатия неявно отображают строки в векторы неявного пространства признаков , а меры сходства на основе сжатия вычисляют сходство в этих пространствах признаков. Для каждого компрессора C(.) мы определяем ассоциированное векторное пространство ℵ, такое, что C(.) отображает входную строку x, соответствующую векторной норме ||~x||. Исчерпывающему исследованию пространств признаков, лежащих в основе всех алгоритмов сжатия, препятствует пространство; вместо этого векторы признаков предпочитают исследовать три репрезентативных метода сжатия без потерь: LZW, LZ77 и PPM. [22]

Согласно теории AIXI , связи, более подробно объясненной в Hutter Prize , наилучшее возможное сжатие x — это наименьшее возможное программное обеспечение, генерирующее x. Например, в этой модели сжатый размер zip-файла включает в себя как сам zip-файл, так и программное обеспечение для распаковки, поскольку вы не можете разархивировать его без того и другого, но может существовать еще меньшая комбинированная форма.

Примеры программного обеспечения для сжатия аудио/видео на базе искусственного интеллекта включают VP9 , ​​NVIDIA Maxine , AIVC, AccMPEG. [23] Примеры программного обеспечения, которое может выполнять сжатие изображений с помощью искусственного интеллекта, включают OpenCV , TensorFlow , MATLAB ’s Image Processing Toolbox (IPT) и высокоточное генеративное сжатие изображений. [24]

В обучении без учителя машинном кластеризация k-средних может использоваться для сжатия данных путем группировки схожих точек данных в кластеры. Этот метод упрощает обработку обширных наборов данных, в которых отсутствуют предопределенные метки, и находит широкое применение в таких областях, как сжатие изображений . [25]

Сжатие данных направлено на уменьшение размера файлов данных, повышение эффективности хранения и ускорение передачи данных. Кластеризация K-средних, алгоритм машинного обучения без учителя, используется для разделения набора данных на определенное количество кластеров k, каждый из которых представлен центроидом своих точек. Этот процесс объединяет обширные наборы данных в более компактный набор репрезентативных точек. Кластеризация k-средних, особенно полезная при изображений и обработке сигналов , способствует сокращению данных за счет замены групп точек данных их центроидами, тем самым сохраняя основную информацию исходных данных, одновременно значительно уменьшая необходимое пространство для хранения. [26]

Модели больших языков (LLM) также способны сжимать данные без потерь, как продемонстрировали исследования DeepMind с моделью Chinchilla 70B. Разработанный DeepMind, Chinchilla 70B эффективно сжимает данные, превосходя традиционные методы, такие как Portable Network Graphics (PNG) для изображений и бесплатный аудиокодек без потерь (FLAC) для аудио. Было достигнуто сжатие изображений и аудиоданных до 43,4% и 16,4% от их исходных размеров соответственно. [27]

Различие данных [ править ]

Самая длинная общая подпоследовательность двух файлов

Сжатие данных можно рассматривать как частный случай различения данных . [28] [29] Различие данных заключается в создании различий с учетом источника и цели, а внесение исправлений воспроизводит цель с учетом источника и разницы. Поскольку при сжатии данных не существует отдельного источника и цели, сжатие данных можно рассматривать как различие данных с пустыми исходными данными, при этом сжатый файл соответствует отличию от ничего. Это то же самое, что рассматривать абсолютную энтропию (соответствующую сжатию данных) как частный случай относительной энтропии (соответствующей различению данных) при отсутствии исходных данных.

Термин «дифференциальное сжатие» используется, чтобы подчеркнуть связь между различиями данных.

Использует [ править ]

Изображение [ править ]

Энтропийное кодирование возникло в 1940-х годах с введением кодирования Шеннона-Фано . [30] основа кодирования Хаффмана , разработанного в 1950 году. [31] Кодирование с преобразованием началось в конце 1960-х годов, с введением кодирования с быстрым преобразованием Фурье (БПФ) в 1968 году и преобразования Адамара в 1969 году. [32]

Важным методом сжатия изображений является дискретное косинусное преобразование (ДКП), метод, разработанный в начале 1970-х годов. [15] DCT является основой JPEG, формата сжатия с потерями , который был представлен Объединенной группой экспертов по фотографии (JPEG) в 1992 году. [33] JPEG значительно сокращает объем данных, необходимых для представления изображения, за счет относительно небольшого снижения качества изображения и стал наиболее широко используемым форматом файлов изображений . [34] [35] Его высокоэффективный алгоритм сжатия на основе DCT во многом способствовал широкому распространению цифровых изображений и цифровых фотографий . [36]

Лемпель-Зив-Велч (LZW) — алгоритм сжатия без потерь, разработанный в 1984 году. Он используется в формате GIF , представленном в 1987 году. [37] DEFLATE — алгоритм сжатия без потерь, указанный в 1996 году, используется в формате Portable Network Graphics (PNG). [38]

Вейвлет-сжатие , использование вейвлетов для сжатия изображений, началось после разработки кодирования DCT. [39] Стандарт JPEG 2000 был представлен в 2000 году. [40] В отличие от алгоритма DCT, используемого в исходном формате JPEG, JPEG 2000 вместо этого использует дискретного вейвлет-преобразования (DWT). алгоритмы [41] [42] [43] Технология JPEG 2000, включающая расширение Motion JPEG 2000 , была выбрана в качестве стандарта кодирования видео для цифрового кино в 2004 году. [44]

Аудио [ править ]

Сжатие аудиоданных, не путать со сжатием динамического диапазона , потенциально может уменьшить полосу пропускания передачи и требования к хранению аудиоданных. Алгоритмы сжатия аудиоформатов реализуются программно в виде аудиокодеков . Как при сжатии с потерями, так и при сжатии без потерь избыточность информации снижается за счет использования таких методов, как кодирование , квантование , DCT и линейное предсказание, чтобы уменьшить объем информации, используемой для представления несжатых данных.

Алгоритмы сжатия звука с потерями обеспечивают более высокое сжатие и используются во многих аудиоприложениях, включая Vorbis и MP3 . Почти все эти алгоритмы основаны на психоакустике для устранения или снижения точности менее слышимых звуков, тем самым уменьшая пространство, необходимое для их хранения или передачи. [2] [45]

Приемлемый компромисс между потерей качества звука и размером передачи или хранилища зависит от приложения. Например, один компакт-диск (CD) емкостью 640 МБ содержит примерно один час несжатой музыки высокого качества , менее 2 часов музыки, сжатой без потерь, или 7 часов музыки, сжатой в формате MP3 со средней скоростью передачи данных . Цифровой диктофон обычно может хранить около 200 часов разборчивой речи в 640 МБ. [46]

Сжатие звука без потерь создает представление цифровых данных, которые можно декодировать до точной цифровой копии оригинала. Степень сжатия составляет около 50–60% от исходного размера. [47] который аналогичен стандартному сжатию данных без потерь. Кодеки без потерь используют аппроксимацию кривой или линейное предсказание в качестве основы для оценки сигнала. Параметры, описывающие оценку и разницу между оценкой и фактическим сигналом, кодируются отдельно. [48]

Существует ряд форматов сжатия звука без потерь. См . список кодеков без потерь . Некоторые форматы связаны с отдельной системой, например, Direct Stream Transfer , используемый в Super Audio CD , и Meridian Lossless Packing , используемый в DVD-Audio , Dolby TrueHD , Blu-ray и HD DVD .

Некоторые форматы аудиофайлов сочетают формат с потерями и коррекцию без потерь; это позволяет удалить исправления и легко получить файл с потерями. К таким форматам относятся MPEG-4 SLS (масштабируемый до без потерь), WavPack и OptimFROG DualStream .

Когда аудиофайлы подлежат обработке, либо путем дальнейшего сжатия, либо для редактирования , желательно работать с неизмененным оригиналом (несжатым или сжатым без потерь). Обработка файла, сжатого с потерями, для какой-либо цели обычно дает конечный результат хуже, чем создание того же сжатого файла из несжатого оригинала. Помимо редактирования или микширования звука, сжатие звука без потерь часто используется для архивного хранения или в качестве мастер-копий.

Сжатие звука с потерями [ править ]

Сравнение спектрограмм звука в несжатом формате и нескольких форматах с потерями. Спектрограммы с потерями показывают ограничение полосы более высоких частот — распространенный метод, связанный со сжатием звука с потерями.

Сжатие звука с потерями используется в широком спектре приложений. Помимо автономных приложений воспроизведения файлов в MP3-плеерах или компьютерах, предназначенных только для аудио, аудиопотоки с цифровым сжатием используются в большинстве видео-DVD, цифровом телевидении, потоковом мультимедиа в Интернете , спутниковом и кабельном радио и все чаще в наземном радиовещании. Сжатие с потерями обычно обеспечивает гораздо большее сжатие, чем сжатие без потерь, за счет отбрасывания менее важных данных на основе психоакустической оптимизации. [49]

Психоакустика признает, что не все данные в аудиопотоке могут быть восприняты слуховой системой человека . В большинстве случаев сжатие с потерями уменьшает избыточность, сначала идентифицируя нерелевантные для восприятия звуки, то есть звуки, которые очень трудно услышать. Типичные примеры включают высокие частоты или звуки, которые возникают одновременно с более громкими звуками. Эти несущественные звуки кодируются с пониженной точностью или вообще не кодируются.

Из-за природы алгоритмов с потерями качество звука страдает от потерь цифрового поколения при распаковке и повторном сжатии файла. Это делает сжатие с потерями непригодным для хранения промежуточных результатов в профессиональных аудиоинженерных приложениях, таких как редактирование звука и многодорожечная запись. Однако форматы с потерями, такие как MP3, очень популярны среди конечных пользователей, поскольку размер файла уменьшается до 5–20% от исходного размера, а в одном мегабайте можно хранить около минуты музыки с адекватным качеством.

Было разработано несколько собственных алгоритмов сжатия с потерями, которые обеспечивают более высокое качество звука за счет использования комбинации алгоритмов без потерь и с потерями с адаптивной скоростью передачи данных и более низкими коэффициентами сжатия. Примеры включают aptX , LDAC , LHDC , MQA и SCL6 .

Методы кодирования [ править ]

Чтобы определить, какая информация в аудиосигнале не имеет значения для восприятия, большинство алгоритмов сжатия с потерями используют преобразования, такие как модифицированное дискретное косинусное преобразование (MDCT), для преобразования дискретизированных сигналов во временной области в область преобразования, обычно в частотную область . После преобразования частоты компонентов можно расставить по приоритетам в зависимости от того, насколько они слышны. Слышимость спектральных составляющих оценивается с использованием абсолютного порога слышимости и принципов одновременной маскировки — явления, при котором сигнал маскируется другим сигналом, разделенным по частоте, — и, в некоторых случаях, временной маскировки — когда сигнал маскируется другим сигналом. разделенные временем. Контуры равной громкости также могут использоваться для взвешивания перцептивной важности компонентов. Модели сочетания человеческого уха и мозга, включающие такие эффекты, часто называют психоакустическими моделями . [50]

Другие типы компрессоров с потерями, такие как кодирование с линейным предсказанием (LPC), используемое с речью, представляют собой кодеры на основе источника. LPC использует модель речевого тракта человека для анализа звуков речи и определения параметров, используемых моделью для их воспроизведения в каждый момент. Эти изменяющиеся параметры передаются или сохраняются и используются для управления другой моделью в декодере, воспроизводящей звук.

Форматы с потерями часто используются для распространения потокового аудио или интерактивного общения (например, в сетях сотовой связи). В таких приложениях данные должны распаковываться по ходу потока данных, а не после передачи всего потока данных. Не все аудиокодеки можно использовать для потоковых приложений. [49]

Задержка связана с методами, используемыми для кодирования и декодирования данных. Некоторые кодеки анализируют более длинный сегмент данных, называемый кадром , для оптимизации эффективности, а затем кодируют его таким образом, что для декодирования требуется одновременно больший сегмент данных. Присущая алгоритму кодирования задержка может иметь решающее значение; например, при двусторонней передаче данных, например, при телефонном разговоре, значительные задержки могут серьезно ухудшить воспринимаемое качество.

В отличие от скорости сжатия, которая пропорциональна количеству операций, требуемых алгоритмом, здесь задержка относится к количеству сэмплов, которые необходимо проанализировать перед обработкой блока аудио. В минимальном случае задержка равна нулю (например, если кодер/декодер просто уменьшает количество бит, используемых для квантования сигнала). Алгоритмы временной области, такие как LPC, также часто имеют низкие задержки, отсюда их популярность при кодировании речи для телефонии. Однако в таких алгоритмах, как MP3, для реализации психоакустической модели в частотной области необходимо анализировать большое количество выборок, а задержка составляет порядка 23 мс.

Кодирование речи [ править ]

Кодирование речи — важная категория сжатия аудиоданных. Модели восприятия, используемые для оценки того, какие аспекты речи может услышать человеческое ухо, обычно несколько отличаются от моделей, используемых для музыки. Диапазон частот, необходимых для передачи звуков человеческого голоса, обычно намного уже, чем тот, который необходим для музыки, и звук обычно менее сложен. В результате речь может быть закодирована с высоким качеством с использованием относительно низкой скорости передачи данных.

Обычно это достигается за счет комбинации двух подходов:

  • Кодирует только звуки, которые мог бы издать один человеческий голос.
  • Выбрасываем больше данных из сигнала — сохраняем ровно столько, чтобы восстановить «разборчивый» голос, а не весь частотный диапазон человеческого слуха .

Самыми ранними алгоритмами, используемыми при кодировании речи (и сжатии аудиоданных в целом), были алгоритм A-law и алгоритм μ-law .

История [ править ]

Solidyne 922: первая в мире коммерческая звуковая карта с битовым сжатием звука для ПК, 1990 г.

Ранние исследования звука проводились в Bell Labs . Там в 1950 году Ч. Чапин Катлер подал патент на дифференциальную импульсно-кодовую модуляцию (ДИКМ). [51] В 1973 году адаптивный DPCM (ADPCM) был представлен П. Каммиски, Никилом С. Джаянтом и Джеймсом Л. Фланаганом . [52] [53]

Перцептивное кодирование было впервые использовано для кодирования речи сжатия с помощью кодирования с линейным предсказанием (LPC). [54] Первоначальные концепции LPC восходят к работе Фумитады Итакура ( Университет Нагои ) и Сюдзо Сайто ( Nippon Telegraph and Telephone ) в 1966 году. [55] В 1970-е годы Бишну С. Атал и Манфред Р. Шредер из Bell Labs разработали форму LPC, названную адаптивным предсказательным кодированием (APC), алгоритм перцептивного кодирования, который использовал маскирующие свойства человеческого уха, за которым в начале 1980-х годов последовало алгоритм линейного предсказания с кодовым возбуждением (CELP), который достиг значительной для своего времени степени сжатия . [54] Перцептивное кодирование используется в современных форматах сжатия звука, таких как MP3. [54] и ААК .

Дискретное косинусное преобразование (ДКП), разработанное Насиром Ахмедом , Т. Натараджаном и К. Р. Рао в 1974 году, [16] обеспечил основу для модифицированного дискретного косинусного преобразования (MDCT), используемого в современных форматах сжатия звука, таких как MP3, [56] Долби Диджитал , [57] [58] и ААК. [59] MDCT был предложен Дж. П. Принсеном, А. В. Джонсоном и А. Б. Брэдли в 1987 г. [60] после более ранней работы Принсена и Брэдли в 1986 году. [61]

Первая в мире коммерческая система сжатия звука для автоматизации вещания была разработана Оскаром Бонелло, профессором инженерных наук Университета Буэнос-Айреса . [62] В 1983 году, используя психоакустический принцип маскировки критических полос, впервые опубликованный в 1967 году, [63] он приступил к разработке практического приложения на основе недавно разработанного компьютера IBM PC , а система автоматизации вещания была запущена в 1987 году под названием Audicom . [64] Спустя 35 лет почти все радиостанции мира использовали эту технологию, разработанную рядом компаний, поскольку изобретатель отказывается получать патенты на свои работы. Он предпочитает объявить его общественным достоянием и опубликовать. [65]

Сборник литературы по широкому спектру систем кодирования звука был опубликован в журнале IEEE по избранным областям связи ( JSAC ) в феврале 1988 года. аудиокодеры, почти все из которых используют методы восприятия, своего рода частотный анализ и внутреннее бесшумное кодирование. [66]

Видео [ править ]

Несжатое видео требует очень высокой скорости передачи данных . Хотя кодеки сжатия видео без потерь работают с коэффициентом сжатия от 5 до 12, типичное видео со сжатием с потерями H.264 имеет коэффициент сжатия от 20 до 200. [67]

Двумя ключевыми методами сжатия видео, используемыми в стандартах видеокодирования, являются DCT и компенсация движения (MC). Большинство стандартов кодирования видео, таких как форматы H.26x и MPEG , обычно используют видеокодирование DCT с компенсацией движения (блочная компенсация движения). [68] [69]

Большинство видеокодеков используются наряду с методами сжатия звука для хранения отдельных, но дополняющих друг друга потоков данных в виде одного объединенного пакета с использованием так называемых форматов контейнеров . [70]

Теория кодирования [ править ]

Видеоданные могут быть представлены как серия кадров неподвижного изображения. Такие данные обычно содержат большое количество пространственной и временной избыточности . Алгоритмы сжатия видео пытаются уменьшить избыточность и более компактно хранить информацию.

Большинство сжатия видео форматов и кодеков используют как пространственную, так и временную избыточность (например, посредством разностного кодирования с компенсацией движения ). Сходства могут кодироваться только путем сохранения различий между, например, соседними во времени кадрами (межкадровое кодирование) или соседними в пространстве пикселями (внутрикадровое кодирование). Межкадровое сжатие (временное дельта-кодирование ) (повторно) использует данные из одного или нескольких более ранних или более поздних кадров в последовательности для описания текущего кадра. внутрикадровое кодирование использует только данные из текущего кадра, что фактически представляет собой сжатие неподвижного изображения. С другой стороны, [50]

Форматы внутрикадрового видеокодирования, используемые в видеокамерах и при редактировании видео, используют более простое сжатие, в котором используется только внутрикадровое предсказание. Это упрощает программное обеспечение для редактирования видео, поскольку предотвращает ситуацию, в которой сжатый кадр ссылается на данные, которые удалил редактор.

Обычно при сжатии видео дополнительно используются сжатия с потерями, методы такие как квантование , которые уменьшают аспекты исходных данных, которые (более или менее) не имеют отношения к зрительному восприятию человека, за счет использования особенностей человеческого зрения. Например, небольшие различия в цвете труднее заметить, чем изменения в яркости. Алгоритмы сжатия могут усреднять цвет в этих похожих областях аналогично тому, как это используется при сжатии изображений JPEG. [9] Как и при любом сжатии с потерями, существует компромисс между качеством видео и скоростью передачи данных , стоимостью обработки сжатия и распаковки, а также системными требованиями. В сильно сжатом видео могут присутствовать видимые или отвлекающие артефакты .

Другие методы, помимо распространенных форматов преобразования на основе DCT, такие как фрактальное сжатие , поиск соответствия и использование дискретного вейвлет-преобразования (DWT), были предметом некоторых исследований, но обычно не используются в практических продуктах. Вейвлет-сжатие используется в кодировщиках неподвижных изображений и видеокодировщиках без компенсации движения. Интерес к фрактальному сжатию, похоже, ослабевает из-за недавнего теоретического анализа, показывающего сравнительную неэффективность таких методов. [50]

Межкадровое кодирование [ править ]

При межкадровом кодировании отдельные кадры видеопоследовательности сравниваются от одного кадра к другому, и кодек сжатия видео записывает различия с опорным кадром. Если в кадре есть области, где ничего не изменилось, система может просто выдать короткую команду, которая копирует эту часть предыдущего кадра в следующий. Если части кадра перемещаются простым образом, компрессор может выдать (немного более длинную) команду, которая сообщает декомпрессору сдвинуть, повернуть, осветлить или затемнить копию. Эта более длинная команда по-прежнему остается намного короче, чем данные, генерируемые внутрикадровым сжатием. Обычно кодер также передает остаточный сигнал, который описывает оставшиеся более тонкие различия с эталонным изображением. Используя энтропийное кодирование, эти сигналы остатков имеют более компактное представление, чем полный сигнал. В областях видео с большим количеством движения сжатие должно кодировать больше данных, чтобы успевать за большим количеством изменяющихся пикселей. Обычно во время взрывов, пламени, стад животных и в некоторых панорамных кадрах высокочастотная детализация приводит к снижению качества или увеличению переменный битрейт .

блочные преобразования форматы Гибридные

Этапы обработки типичного видеокодера

Сегодня, [ на момент? ] почти все широко используемые методы сжатия видео (например, те, которые указаны в стандартах, одобренных ITU-T или ISO ) имеют одну и ту же базовую архитектуру, восходящую к H.261 , который был стандартизирован ITU-T в 1988 году. Они в основном полагаются на DCT, применяемый к прямоугольным блокам соседних пикселей, и временное предсказание с использованием векторов движения , а также на этап внутриконтурной фильтрации.

На этапе прогнозирования дедупликации применяются различные методы и разностного кодирования, которые помогают декоррелировать данные и описывать новые данные на основе уже переданных данных.

Затем прямоугольные блоки оставшихся данных пикселей преобразуются в частотную область. На основном этапе обработки с потерями данные частотной области квантуются, чтобы уменьшить количество информации, не имеющей отношения к зрительному восприятию человека.

На последнем этапе статистическая избыточность в значительной степени устраняется с помощью энтропийного кодера , который часто применяет ту или иную форму арифметического кодирования.

На этапе дополнительной внутриконтурной фильтрации к восстановленному сигналу изображения могут быть применены различные фильтры. Вычисляя эти фильтры также внутри цикла кодирования, они могут помочь в сжатии, поскольку их можно применять к эталонному материалу до того, как он будет использован в процессе прогнозирования, и ими можно управлять, используя исходный сигнал. Самый популярный пример — фильтры деблокировки , которые размывают артефакты блокировки из-за разрывов квантования на границах блоков преобразования.

История [ править ]

В 1967 году А.Х. Робинсон и К. Черри предложили схему сжатия полосы пропускания кодирования по длине серии для передачи аналоговых телевизионных сигналов. [71] DCT, лежащий в основе современного сжатия видео, [72] был представлен Насиром Ахмедом , Т. Натараджаном и К. Р. Рао в 1974 году. [16] [73]

H.261 , дебютировавший в 1988 году, представил на рынке распространенную базовую архитектуру технологии сжатия видео. [74] Это был первый формат кодирования видео, основанный на сжатии DCT. [72] H.261 был разработан рядом компаний, включая Hitachi , PictureTel , NTT , BT и Toshiba . [75]

Наиболее популярными стандартами кодирования видео, используемыми для кодеков, являются стандарты MPEG . MPEG-1 был разработан Группой экспертов по кинематографии (MPEG) в 1991 году и предназначен для сжатия VHS видео качества . На смену ему в 1994 году пришел MPEG-2 / H.262 . [74] который был разработан рядом компаний, в первую очередь Sony , Thomson и Mitsubishi Electric . [76] MPEG-2 стал стандартным видеоформатом для DVD и цифрового телевидения SD . [74] В 1999 году за ним последовал MPEG-4 / H.263 . [74] Его также разработал ряд компаний, в первую очередь Mitsubishi Electric, Hitachi и Panasonic . [77]

H.264/MPEG-4 AVC был разработан в 2003 году рядом организаций, в первую очередь Panasonic, Godo Kaisha IP Bridge и LG Electronics . [78] AVC коммерчески представила современные алгоритмы контекстно-адаптивного двоичного арифметического кодирования (CABAC) и контекстно-адаптивного кодирования переменной длины (CAVLC). AVC является основным стандартом кодирования видео для дисков Blu-ray и широко используется веб-сайтами обмена видео и потоковыми интернет-сервисами, такими как YouTube , Netflix , Vimeo и iTunes Store , веб-программами, такими как Adobe Flash Player и Microsoft Silverlight , а также различными HDTV вещает по наземному и спутниковому телевидению.

Генетика [ править ]

Алгоритмы генетического сжатия — это последнее поколение алгоритмов без потерь, которые сжимают данные (обычно последовательности нуклеотидов) с использованием как традиционных алгоритмов сжатия, так и генетических алгоритмов, адаптированных к конкретному типу данных. В 2012 году группа ученых из Университета Джонса Хопкинса опубликовала алгоритм генетического сжатия, который не использует для сжатия эталонный геном. HAPZIPPER был специально разработан для данных HapMap и обеспечивает более чем 20-кратное сжатие (уменьшение размера файла на 95%), обеспечивая в 2–4 раза лучшее сжатие и требует меньше вычислительных ресурсов, чем ведущие утилиты сжатия общего назначения. Для этого Чанда, Эльхайк и Бадер представили кодирование на основе MAF (MAFE), которое уменьшает гетерогенность набора данных за счет сортировки SNP по частоте их второстепенных аллелей, тем самым гомогенизируя набор данных. [79] Другие алгоритмы, разработанные в 2009 и 2013 годах (DNAZip и GenomeZip), имеют степень сжатия до 1200 раз, что позволяет хранить 6 миллиардов диплоидных геномов человека в 2,5 мегабайтах (по отношению к эталонному геному или в среднем по множеству геномов). [80] [81] Информацию об эталоне компрессоров данных генетики/геномики см. [82]

и в настоящее время неиспользованный потенциал Перспективы

Подсчитано, что общий объем данных, хранящихся на мировых устройствах хранения, может быть дополнительно сжат с помощью существующих алгоритмов сжатия с оставшимся средним коэффициентом 4,5:1. [83] Подсчитано, что совокупные технологические возможности мира для хранения информации обеспечивают 1300 эксабайт аппаратных цифр в 2007 году, но когда соответствующий контент оптимально сжат, это представляет собой только 295 эксабайт информации Шеннона . [84]

См. также [ править ]

Ссылки [ править ]

  1. ^ Уэйд, Грэм (1994). Кодирование и обработка сигналов (2-е изд.). Издательство Кембриджского университета. п. 34. ISBN  978-0-521-42336-6 . Проверено 22 декабря 2011 г. Общая цель исходного кодирования состоит в том, чтобы использовать или устранить «неэффективную» избыточность в источнике PCM и тем самым добиться снижения общей скорости источника R.
  2. ^ Jump up to: Перейти обратно: а б Махди, ОА; Мохаммед, Массачусетс; Мохамед, AJ (ноябрь 2012 г.). «Реализация нового подхода к преобразованию сжатия аудио в кодирование текста с помощью гибридной техники» (PDF) . Международный журнал проблем компьютерных наук . 9 (6, № 3): 53–59. Архивировано (PDF) из оригинала 20 марта 2013 г. Проверено 6 марта 2013 г.
  3. ^ Пуджар, Дж. Х.; Кадласкар, LM (май 2010 г.). «Новый метод сжатия и декомпрессии изображений без потерь с использованием методов кодирования Хаффмана» (PDF) . Журнал теоретических и прикладных информационных технологий . 15 (1): 18–23. Архивировано (PDF) из оригинала 24 мая 2010 г.
  4. ^ Саломон, Дэвид (2008). Краткое введение в сжатие данных . Берлин: Шпрингер. ISBN  9781848000728 .
  5. ^ Танк, МК (2011). «Реализация алгоритма Лемпеля-ЗИВ для сжатия без потерь с использованием VHDL». Thinkquest 2010: Материалы Первой международной конференции по контурам вычислительных технологий . Берлин: Шпрингер. стр. 275–283. дои : 10.1007/978-81-8489-989-4_51 . ISBN  978-81-8489-988-7 .
  6. ^ Навки, Сауд; Накви, Р.; Риаз, РА; Сиддики, Ф. (апрель 2011 г.). «Оптимизированная конструкция RTL и реализация алгоритма LZW для приложений с высокой пропускной способностью» (PDF) . Электрический обзор . 2011 (4): 279–285. Архивировано (PDF) из оригинала 20 мая 2013 г.
  7. ^ Стивен, Вольфрам (2002). Новый вид науки . Шампейн, Иллинойс. п. 1069. ИСБН  1-57955-008-8 . {{cite book}}: CS1 maint: отсутствует местоположение издателя ( ссылка )
  8. ^ Jump up to: Перейти обратно: а б Махмуд, Салауддин (март 2012 г.). «Улучшенный метод сжатия общих данных» (PDF) . Международный журнал научных и инженерных исследований . 3 (3): 2. Архивировано (PDF) из оригинала 2 ноября 2013 г. Проверено 6 марта 2013 г.
  9. ^ Jump up to: Перейти обратно: а б Лейн, Том. «Часто задаваемые вопросы по сжатию изображений JPEG, часть 1» . Интернет-архив часто задаваемых вопросов . Независимая группа JPEG . Проверено 6 марта 2013 г.
  10. ^ Дж. Дж. Салливан ; Ж.-Р. Ом; В.-Ж. Хан; Т. Виганд (декабрь 2012 г.). «Обзор стандарта высокоэффективного кодирования видео (HEVC)». Транзакции IEEE по схемам и системам видеотехнологий . 22 (12). IEEE : 1649–1668. дои : 10.1109/TCSVT.2012.2221191 . S2CID   64404 .
  11. ^ «Как выбрать оптимальные настройки архивирования – WinRAR» .
  12. ^ «Переключатель (Установить метод сжатия) – 7zip» . Архивировано из оригинала 9 апреля 2022 г. Проверено 7 ноября 2021 г.
  13. ^ Вольфрам, Стивен (2002). Новый вид науки . Wolfram Media, Inc. с. 1069 . ISBN  978-1-57955-008-0 .
  14. ^ Аркангел, Кори. «О сжатии» (PDF) . Архивировано (PDF) из оригинала 28 июля 2013 г. Проверено 6 марта 2013 г.
  15. ^ Jump up to: Перейти обратно: а б Ахмед, Насир (январь 1991 г.). «Как я придумал дискретное косинусное преобразование» . Цифровая обработка сигналов . 1 (1): 4–5. Бибкод : 1991DSP.....1....4A . дои : 10.1016/1051-2004(91)90086-Z .
  16. ^ Jump up to: Перейти обратно: а б с Насир Ахмед ; Т. Натараджан; Камисетти Рамамохан Рао (январь 1974 г.). «Дискретное косинусное преобразование» (PDF) . Транзакции IEEE на компьютерах . С-23 (1): 90–93. дои : 10.1109/TC.1974.223784 . S2CID   149806273 . Архивировано (PDF) из оригинала 8 декабря 2016 г.
  17. ^ Исследовательская группа CCITT VIII и Объединенная группа экспертов по фотографии (JPEG) Объединенного технического комитета 1 ISO/IEC/Подкомитета 29/Рабочой группы 10 (1993 г.), «Приложение D – Арифметическое кодирование», Рекомендация T.81: Цифровое сжатие и кодирование Непрерывные неподвижные изображения – Требования и рекомендации (PDF) , стр. 54 и далее , получено 7 ноября 2009 г. {{citation}}: CS1 maint: числовые имена: список авторов ( ссылка )
  18. ^ Марак, Ласло. «О сжатии изображений» (PDF) . Университет Марн-ла-Валле. Архивировано из оригинала (PDF) 28 мая 2015 года . Проверено 6 марта 2013 г.
  19. ^ Махони, Мэтт. «Обоснование теста сжатия большого текста» . Флоридский технологический институт . Проверено 5 марта 2013 г.
  20. ^ Шмилович А.; Кахири Ю.; Бен-Гал И.; Хаузер С. (2009). «Измерение эффективности внутридневного рынка Форекс с помощью универсального алгоритма сжатия данных» (PDF) . Вычислительная экономика . 33 (2): 131–154. CiteSeerX   10.1.1.627.3751 . дои : 10.1007/s10614-008-9153-3 . S2CID   17234503 . Архивировано (PDF) из оригинала 9 июля 2009 г.
  21. ^ И. Бен-Гал (2008). «Об использовании мер сжатия данных для анализа робастных проектов» (PDF) . Транзакции IEEE о надежности . 54 (3): 381–388. дои : 10.1109/TR.2005.853280 . S2CID   9376086 .
  22. ^ Д. Скалли; Карла Э. Бродли (2006). «Сжатие и машинное обучение: новый взгляд на векторы пространства признаков». Конференция по сжатию данных (DCC'06) . п. 332. дои : 10.1109/DCC.2006.13 . ISBN  0-7695-2545-8 . S2CID   12311412 .
  23. ^ Гэри Адкок (5 января 2023 г.). «Что такое сжатие видео AI?» . массивный.io . Проверено 6 апреля 2023 г.
  24. ^ Гилад Давид Мааян (24 ноября 2021 г.). «Сжатие изображений на основе искусственного интеллекта: современное состояние» . На пути к науке о данных . Проверено 6 апреля 2023 г.
  25. ^ «Что такое обучение без учителя? | IBM» . www.ibm.com . 23 сентября 2021 г. Проверено 5 февраля 2024 г.
  26. ^ «Дифференциально частная кластеризация для крупномасштабных наборов данных» . блог.research.google . 25 мая 2023 г. Проверено 16 марта 2024 г.
  27. ^ Эдвардс, Бендж (28 сентября 2023 г.). «Языковые модели искусственного интеллекта могут превосходить PNG и FLAC по сжатию без потерь, говорится в исследовании» . Арс Техника . Проверено 7 марта 2024 г.
  28. ^ Корн, Д.; и др. (июль 2002 г.). «RFC 3284: Общий формат данных дифференцирования и сжатия VCDIFF» . Рабочая группа по интернет-инжинирингу . Проверено 5 марта 2013 г.
  29. ^ Корн, Д.Г.; Во, КП (1995). Б. Кришнамурти (ред.). Vdelta: дифференцирование и сжатие . Практическое многоразовое программное обеспечение Unix. Нью-Йорк: John Wiley & Sons, Inc.
  30. ^ Клод Элвуд Шеннон (1948). Alcatel-Lucent (ред.). «Математическая теория связи» (PDF) . Технический журнал Bell System . 27 (3–4): 379–423, 623–656. дои : 10.1002/j.1538-7305.1948.tb01338.x . hdl : 11858/00-001M-0000-002C-4314-2 . Архивировано (PDF) из оригинала 24 мая 2011 г. Проверено 21 апреля 2019 г.
  31. ^ Дэвид Альберт Хаффман (сентябрь 1952 г.), «Метод построения кодов с минимальной избыточностью» (PDF) , Proceedings of IRE , vol. 40, нет. 9, стр. 1098–1101, doi : 10.1109/JRPROC.1952.273898 , заархивировано (PDF) из оригинала 8 октября 2005 г.
  32. ^ Пратт, ВК; Кейн, Дж.; Эндрюс, ХК (1969). «Кодирование изображений с преобразованием Адамара». Труды IEEE . 57 : 58–68. дои : 10.1109/PROC.1969.6869 .
  33. ^ «T.81 – ЦИФРОВОЕ СЖАТИЕ И КОДИРОВАНИЕ НЕПРЕРЫВНЫХ СТАЦИОНАРНЫХ ИЗОБРАЖЕНИЙ – ТРЕБОВАНИЯ И РУКОВОДСТВА» (PDF) . ССИТТ . Сентябрь 1992 года . Проверено 12 июля 2019 г.
  34. ^ «Описание формата изображения JPEG» . BT.com . Группа БТ . 31 мая 2018 года. Архивировано из оригинала 5 августа 2019 года . Проверено 5 августа 2019 г.
  35. ^ Баранюк, Крис (15 октября 2015 г.). «Защита от копирования может появиться в формате JPEG» . Новости Би-би-си . Би-би-си . Проверено 13 сентября 2019 г.
  36. ^ «Что такое JPEG? Невидимый объект, который вы видите каждый день» . Атлантика . 24 сентября 2013 года . Проверено 13 сентября 2019 г.
  37. ^ «Спор о GIF: взгляд разработчика программного обеспечения» . 27 января 1995 года . Проверено 26 мая 2015 г.
  38. ^ Л. Питер Дойч (май 1996 г.). DEFLATE Спецификация формата сжатых данных, версия 1.3 . IETF . п. 1. сек. Абстрактный. дои : 10.17487/RFC1951 . РФК 1951 . Проверено 23 апреля 2014 г.
  39. ^ Хоффман, Рой (2012). Сжатие данных в цифровых системах . Springer Science & Business Media . п. 124. ИСБН  9781461560319 . По сути, вейвлет-кодирование — это вариант кодирования с преобразованием на основе DCT, который уменьшает или устраняет некоторые его ограничения. (...) Еще одним преимуществом является то, что вместо работы с блоками пикселей 8 × 8, как это происходит в JPEG и других методах блочного DCT, вейвлет-кодирование может одновременно сжимать все изображение.
  40. ^ Таубман, Дэвид; Марселлин, Майкл (2012). Основы, стандарты и практика сжатия изображений JPEG2000: Основы, стандарты и практика сжатия изображений . Springer Science & Business Media . ISBN  9781461507994 .
  41. ^ Унсер, М.; Блю, Т. (2003). «Математические свойства вейвлет-фильтров JPEG2000» . Транзакции IEEE при обработке изображений . 12 (9): 1080–1090. Бибкод : 2003ИТИП...12.1080У . дои : 10.1109/TIP.2003.812329 . ПМИД   18237979 . S2CID   2765169 .
  42. ^ Салливан, Гэри (8–12 декабря 2003 г.). «Общие характеристики и соображения по проектированию временного поддиапазонного видеокодирования» . МСЭ-Т . Группа экспертов по видеокодированию . Проверено 13 сентября 2019 г.
  43. ^ Бовик, Алан С. (2009). Основное руководство по обработке видео . Академическая пресса . п. 355. ИСБН  9780080922508 .
  44. ^ Шварц, Чарльз С. (2005). Понимание цифрового кино: Профессиональный справочник . Тейлор и Фрэнсис . п. 147. ИСБН  9780240806174 .
  45. ^ Каннингем, Стюарт; МакГрегор, Иэн (2019). «Субъективная оценка музыки, сжатой с помощью кодека ACER, по сравнению с AAC, MP3 и несжатым PCM» . Международный журнал цифрового мультимедийного вещания . 2019 : 1–16. дои : 10.1155/2019/8265301 .
  46. ^ Цифровой диктофон Olympus WS-120, согласно инструкции, может хранить около 178 часов аудио высокого качества в формате .WMA во флэш-памяти объемом 500 МБ.
  47. ^ Коулсон, Джош. «Сравнение FLAC» . Проверено 23 августа 2020 г.
  48. ^ «Обзор формата» . Проверено 23 августа 2020 г.
  49. ^ Jump up to: Перейти обратно: а б Джайсвал, Р.К. (2009). Аудио-Видеотехника . Пуна, Махараштра: Нирали Пракашан. п. 3.41. ISBN  9788190639675 .
  50. ^ Jump up to: Перейти обратно: а б с Факсин Ю; Хао Ло; Чжэмин Лу (2010). Анализ и обработка трехмерных моделей . Берлин: Шпрингер. п. 47 . ISBN  9783642126512 .
  51. ^ Патент США 2605361 , К. Чапин Катлер, «Дифференциальное квантование сигналов связи», выдан 29 июля 1952 г.  
  52. ^ Каммиски, П.; Джаянт, Н.С.; Фланаган, Дж. Л. (1973). «Адаптивное квантование при дифференциальном PCM-кодировании речи». Технический журнал Bell System . 52 (7): 1105–1118. дои : 10.1002/j.1538-7305.1973.tb02007.x .
  53. ^ Каммиски, П.; Джаянт, Никил С.; Фланаган, Дж. Л. (1973). «Адаптивное квантование при дифференциальном ИКМ-кодировании речи». Технический журнал Bell System . 52 (7): 1105–1118. дои : 10.1002/j.1538-7305.1973.tb02007.x . ISSN   0005-8580 .
  54. ^ Jump up to: Перейти обратно: а б с Шредер, Манфред Р. (2014). «Лаборатории Белла» . Акустика, информация и связь: Мемориальный том в честь Манфреда Р. Шредера . Спрингер. п. 388. ИСБН  9783319056609 .
  55. ^ Грей, Роберт М. (2010). «История цифровой речи в реальном времени в пакетных сетях: Часть II линейного прогнозирующего кодирования и интернет-протокола» (PDF) . Найденный. Процесс сигналов трендов . 3 (4): 203–303. дои : 10.1561/2000000036 . ISSN   1932-8346 . Архивировано (PDF) из оригинала 4 июля 2010 г.
  56. ^ Гукерт, Джон (весна 2012 г.). «Использование БПФ и MDCT в сжатии аудио MP3» (PDF) . Университет Юты . Архивировано (PDF) из оригинала 24 января 2014 г. Проверено 14 июля 2019 г.
  57. ^ Ло, Фа-Лонг (2008). Стандарты мобильного мультимедийного вещания: технологии и практика . Springer Science & Business Media . п. 590. ИСБН  9780387782638 .
  58. ^ Британак, В. (2011). «О свойствах, связях и упрощенной реализации наборов фильтров в стандартах кодирования звука Dolby Digital (Plus) AC-3». Транзакции IEEE по обработке звука, речи и языка . 19 (5): 1231–1241. дои : 10.1109/TASL.2010.2087755 . S2CID   897622 .
  59. ^ Бранденбург, Карлхайнц (1999). «Объяснение MP3 и AAC» (PDF) . Архивировано (PDF) из оригинала 13 февраля 2017 г.
  60. ^ Принсен, Дж.; Джонсон, А.; Брэдли, А. (1987). «Кодирование поддиапазона/преобразования с использованием конструкции банка фильтров на основе отмены псевдонимов во временной области». ИКАССП '87. Международная конференция IEEE по акустике, речи и обработке сигналов . Том. 12. С. 2161–2164. дои : 10.1109/ICASSP.1987.1169405 . S2CID   58446992 .
  61. ^ Принсен, Дж.; Брэдли, А. (1986). «Разработка банка фильтров анализа/синтеза на основе отмены псевдонимов во временной области». Транзакции IEEE по акустике, речи и обработке сигналов . 34 (5): 1153–1161. дои : 10.1109/ТАССП.1986.1164954 .
  62. ^ «Рикардо Саметбанд, газета La Nación «История пионера цифрового звука» » (на испанском языке).
  63. ^ Цвикер, Эберхард; и др. (1967). Ухо как приемник сообщения . Мелвилл, Нью-Йорк: Акустическое общество Америки. Архивировано из оригинала 14 сентября 2000 г. Проверено 11 ноября 2011 г.
  64. ^ «Краткий обзор некоторых вкладов Solidyne в радиовещательную технику» . Краткая история Solidyne . Буэнос-Айрес: Солидайн. Архивировано из оригинала 8 марта 2013 года . Проверено 6 марта 2013 г.
  65. ^ «Объявление Audicom, журнал AES, июль-август 1992 г., том 40, № 7/8, стр. 647» .
  66. ^ «Возможности сжатия файлов» . Краткое руководство по сжатию файла четырьмя различными способами . 17 февраля 2017 г.
  67. ^ Дмитрий Ватолин; и др. (Видеогруппа лаборатории графики и медиа) (март 2007 г.). Сравнение видеокодеков без потерь '2007 (PDF) (Отчет). Московский государственный университет. Архивировано (PDF) из оригинала 15 мая 2008 г.
  68. ^ Чен, Цзе; Коч, Ут-Ва; Лю, Кей Джей Рэй (2001). Проектирование систем кодирования цифрового видео: комплексный подход к сжатой области . ЦРК Пресс . п. 71. ИСБН  9780203904183 .
  69. ^ Ли, Цзянь Пин (2006). Материалы Международной компьютерной конференции 2006 г. по вейвлетным активным медиа-технологиям и обработке информации: Чунцин, Китай, 29–31 августа 2006 г. Всемирная научная . п. 847. ИСБН  9789812709998 .
  70. ^ «Видеокодирование» . Сайт ЦИП . Центр обработки сигналов и информации, Технологический институт Джорджии. Архивировано из оригинала 23 мая 2013 года . Проверено 6 марта 2013 г.
  71. ^ Робинсон, АХ; Черри, К. (1967). «Результаты прототипа схемы сжатия телевизионной полосы пропускания». Труды IEEE . 55 (3). ИИЭР : 356–364. дои : 10.1109/PROC.1967.5493 .
  72. ^ Jump up to: Перейти обратно: а б Ганбари, Мохаммед (2003). Стандартные кодеки: от сжатия изображения до расширенного кодирования видео . Институт техники и технологий . стр. 1–2. ISBN  9780852967102 .
  73. ^ Читатель, Клифф (31 августа 2016 г.). «Патентный ландшафт для бесплатного кодирования видео» . В Тешере, Эндрю Дж. (ред.). Применение цифровой обработки изображений XXXIX . Применение цифровой обработки изображений XXXIX. Том. 9971. Сан-Диего, Калифорния: Общество инженеров фотооптических приборов. стр. 99711Б. Бибкод : 2016SPIE.9971E..1BR . дои : 10.1117/12.2239493 . Архивировано из оригинала 8 декабря 2016 г. Запись лекции, с 3:05:10.
  74. ^ Jump up to: Перейти обратно: а б с д «Инфографика по истории форматов видеофайлов — RealPlayer» . 22 апреля 2012 г.
  75. ^ «Декларация о патенте, зарегистрированная как H261-07» . МСЭ . Проверено 11 июля 2019 г.
  76. ^ «Список патентов MPEG-2» (PDF) . MPEG Лос-Анджелес . Архивировано (PDF) из оригинала 29 мая 2019 г. Проверено 7 июля 2019 г.
  77. ^ «Визуальный MPEG-4 — список патентов» (PDF) . MPEG Лос-Анджелес . Архивировано (PDF) из оригинала 6 июля 2019 г. Проверено 6 июля 2019 г.
  78. ^ «AVC/H.264 – Список патентов» (PDF) . MPEG Лос-Анджелес . Проверено 6 июля 2019 г.
  79. ^ Чанда П., Бадер Дж.С., Эльхаик Э. (27 июля 2012 г.). «HapZipper: делиться популяциями HapMap стало проще» . Исследования нуклеиновых кислот . 40 (20): е159. дои : 10.1093/nar/gks709 . ПМЦ   3488212 . ПМИД   22844100 .
  80. ^ Кристли С., Лу Ю, Ли С, Се Икс (15 января 2009 г.). «Геномы человека как вложения к электронной почте» . Биоинформатика . 25 (2): 274–5. doi : 10.1093/биоинформатика/btn582 . ПМИД   18996942 .
  81. ^ Павличин Д.С., Вайсман Т., Йона Г. (сентябрь 2013 г.). «Геном человека снова сокращается» . Биоинформатика . 29 (17): 2199–202. doi : 10.1093/биоинформатика/btt362 . ПМИД   23793748 .
  82. ^ Хоссейни, Мортеза; Пратас, Диого; Пиньо, Армандо (2016). «Обзор методов сжатия данных биологических последовательностей» . Информация . 7 (4): 56. дои : 10.3390/info7040056 .
  83. ^ «Сжатие данных посредством логического синтеза» (PDF) .
  84. ^ Гильберт, Мартин; Лопес, Присцила (1 апреля 2011 г.). «Мировые технологические возможности для хранения, передачи и вычисления информации» . Наука . 332 (6025): 60–65. Бибкод : 2011Sci...332...60H . дои : 10.1126/science.1200970 . ПМИД   21310967 . S2CID   206531385 .

Внешние ссылки [ править ]