Моделирование электронных схем
Моделирование электронных схем использует математические модели для воспроизведения поведения реального электронного устройства или схемы. Программное обеспечение для моделирования позволяет моделировать работу схемы и является бесценным инструментом анализа. Благодаря возможности высокоточного моделирования многие колледжи и университеты используют этот тип программного обеспечения для преподавания программ по электронике и инженерии электроники . Программное обеспечение для моделирования электроники привлекает пользователей, интегрируя их в процесс обучения. Эти виды взаимодействия активно привлекают учащихся к анализу, синтезу , организации и оценке контента, в результате чего учащиеся создают свои собственные знания. [1]
Моделирование поведения схемы перед ее фактическим созданием может значительно повысить эффективность проектирования, сообщая о дефектных конструкциях как таковые и обеспечивая понимание поведения проектов электронных схем. В частности, для интегральных схем инструментарий ( фотошаблоны ) дорог, макетные платы непрактичны, а исследование поведения внутренних сигналов крайне сложно. Поэтому почти все проекты ИС в значительной степени основаны на моделировании. Самый известный аналоговый симулятор – SPICE. Вероятно, самые известные цифровые симуляторы основаны на Verilog и VHDL .
Некоторые симуляторы электроники включают в себя редактор схем , механизм моделирования и экранное отображение формы сигнала (см. рисунок 1), что позволяет разработчикам быстро модифицировать моделируемую схему и видеть, какое влияние эти изменения оказывают на выходные данные. Они также обычно содержат обширные библиотеки моделей и устройств. Эти модели обычно включают модели транзисторов, предназначенные для микросхем, такие как BSIM, общие компоненты, такие как резисторы , конденсаторы , катушки индуктивности и трансформаторы , определяемые пользователем модели (например, управляемые источники тока и напряжения или модели в Verilog-A или VHDL-AMS ). Для проектирования печатных плат (PCB) также требуются определенные модели, такие как линии передачи для трасс и модели IBIS для управления и приема электроники.
Типы
[ редактировать ]Хотя есть строго аналог [2] симуляторы электронных схем, популярные симуляторы часто включают в себя как аналоговое, так и событийно-ориентированное цифровое моделирование. [3] возможности и известны как симуляторы смешанного режима или смешанных сигналов, если они могут моделировать оба режима одновременно. [4] Весь анализ смешанных сигналов может осуществляться на основе одной интегрированной схемы. Все цифровые модели в смешанных симуляторах обеспечивают точную спецификацию времени распространения и задержек нарастания/спада.
, управляемый событиями Алгоритм , предоставляемый симуляторами смешанного режима, является универсальным и поддерживает нецифровые типы данных. Например, элементы могут использовать действительные или целочисленные значения для имитации функций DSP или фильтров выборочных данных. Поскольку алгоритм, управляемый событиями, работает быстрее, чем стандартное матричное решение SPICE, время моделирования значительно сокращается для схем, которые используют модели, управляемые событиями, вместо аналоговых моделей. [5]
Моделирование в смешанном режиме осуществляется на трех уровнях; (а) с примитивными цифровыми элементами, использующими модели синхронизации и встроенный симулятор цифровой логики с 12 или 16 состояниями, (б) с моделями подсхем, использующими реальную транзисторную топологию интегральной схемы , и, наконец, (в) с In- строковые логические выражения.
Точные представления используются в основном при анализе проблем с линиями передачи и целостностью сигнала , когда необходима тщательная проверка характеристик ввода-вывода микросхемы. Выражения логической логики представляют собой функции без задержек, которые используются для обеспечения эффективной обработки логических сигналов в аналоговой среде. Эти два метода моделирования используют SPICE для решения проблемы, тогда как третий метод, цифровые примитивы, использует возможности смешанного режима. Каждый из этих методов имеет свои преимущества и целевое применение. Фактически, многие модели (особенно те, которые используют АЦП) требуют комбинации всех трех подходов. Ни один подход сам по себе не является достаточным.
Другой тип моделирования, используемый в основном для силовой электроники, представляет собой кусочно-линейное моделирование. [6] алгоритмы. Эти алгоритмы используют аналоговое (линейное) моделирование до тех пор, пока силовой электронный переключатель не изменит свое состояние. В это время рассчитывается новая аналоговая модель, которая будет использоваться в следующем периоде моделирования. Эта методология значительно повышает скорость и стабильность моделирования. [7]
Сложности
[ редактировать ]Изменения в процессе проекта возникают при изготовлении , и симуляторы схем часто не учитывают эти изменения. Эти изменения могут быть небольшими, но в совокупности они могут существенно изменить выходную мощность чипа.
Изменение температуры также можно смоделировать для моделирования работы схемы в различных температурных диапазонах. [8]
Моделирование из матрицы адмиттанса
[ редактировать ]Распространенным методом моделирования систем линейных цепей является использование матриц проводимости или Y-матриц. Этот метод включает в себя моделирование отдельных линейных компонентов в виде матрицы допусков портов N, вставку матрицы Y компонента в матрицу допусков узлов схемы , установку оконечных устройств портов в узлах, содержащих порты, исключение портов без узлов посредством сокращения Крона , преобразование окончательной матрицы Y в матрицу S или Z по мере необходимости и извлечение желаемых измерений из матрицы Y, Z и/или S.
Простой пример фильтра Чебышева
[ редактировать ]Фильтр Чебышева пятого порядка, сопротивление 50 Ом, неравномерность полосы пропускания 1 дБ и частота среза 1 ГГц, разработанный с использованием топологии Чебышева Кауара и последующего масштабирования импеданса и частоты, создает элементы, показанные в таблице и на схеме Micro-cap ниже.
элемент | значение g | Тип | масштабирован для
50 Ом и 1 ГГц |
узлы |
---|---|---|---|---|
П1 | 1 | порт | 50 | 1 |
Л1 | 2.1348815 | индуктор | 1.6988847E-08 | 1, 2 |
С1 | 1.0911073 | конденсатор | 3.4731024Е-12 | 2, 0 |
Л2 | 3.0009229 | индуктор | 2.3880586Е-08 | 2, 3 |
С2 | 1.0911073 | конденсатор | 3.4731024Е-12 | 3, 0 |
Л3 | 2.1348815 | индуктор | 1.6988847E-08 | 3, 4 |
П2 | 1 | порт | 50 | 4 |
Моделирование параметров 2 порта Y
[ редактировать ]В таблице выше представлен список идеальных элементов для моделирования, а также узлы для моделирования. Затем каждый элемент, не являющийся портом, должен быть преобразован в модель параметров Y 2X2 для каждой моделируемой частоты. Для этого примера выбрана частота 1 ГГц.
Элементы, подключенные к узлу 0, заземляющему узлу, не требуют расчета соответствующих Y12 или Y21 и показаны в таблице как «н/д».
элемент | пропускная способность на частоте 1 ГГц | Y11, Y22 на частоте 1 ГГц | Y12, Y21 на частоте 1 ГГц | узлы |
---|---|---|---|---|
П1 | н/д | н/д | н/д | 1 |
Л1 | -J0.0093682013 | -J0.0093682013 | J0.0093682013 | 1, 2 |
С1 | j0.021822146 | j0.021822146 | н/д | 2, 0 |
Л2 | -J0.0066646164 | -J0.0066646164 | J0.0066646164 | 2, 3 |
С2 | j0.021822146 | j0.021822146 | н/д | 3, 0 |
Л3 | -J0.0093682013 | -J0.0093682013 | J0.0093682013 | 3, 4 |
П2 | н/д | н/д | н/д | 4 |
Вставка двух параметров порта Y в узловую матрицу проводимости.
[ редактировать ]Следует помнить, что, хотя идеальные модальные модели индуктора и конденсатора состоят из очень простых моделей 2x2, где Y11 = Y22 = -Y12 = -Y21, большинство элементов реального мира не могут быть смоделированы так просто. для линий передачи Например, и реальных моделей индукторов и конденсаторов Y11 != -Y12, а для некоторых более сложных пассивных асимметричных элементов Y11 != Y22. Для многих активных линейных устройств, таких как операционные усилители , Y12 != Y21. Поэтому в примере в этом разделе используются независимые Y11, Y12, Y21 и Y22 для иллюстрации процессов моделирования, применимых к более сложным устройствам реального мира.
Каждый параметр элемента Y вставляется в узловую матрицу допусков путем суммирования их по узлам, к которым они прикреплены, в соответствии с приведенными ниже правилами. [9]
- Y11 суммируется с узлом nxn на диагонали, где n — это узел, к которому прикреплен первый вывод, вывод 1.
Если второй узел не 0, то есть не земля:
- Y22 суммируется с узлом mxm на диагонали, где m — узел, к которому прикреплен второй вывод, вывод 2.
- Y12 суммируется с местоположением узла nxm.
- Y21 суммируется с местоположением узла mxn.
В таблице ниже показаны параметры элемента Чебышева 2x2 Y, суммированные в соответствующих местах.
узел | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | L1_Y11 | L1_Y12 | ||
2 | L1_Y21 | L1_Y22+C1_Y11+L2_Y11 | L2_Y12 | |
3 | L2_Y21 | L2_Y22+C2_Y11+L3_Y11 | L3_Y12 | |
5 | L3_Y21 | L3_Y22 |
Числовые записи матрицы узловой проводимости
[ редактировать ]Для моделирования фильтра на частоте 1 ГГц или любой частоте параметры элемента Y необходимо преобразовать в числовые значения с использованием моделей параметров Y, соответствующих установленному элементу. Для идеальных катушек индуктивности и конденсаторов хорошо известно Y11 = Y22 = -Y12 = -Y21 = для индукторов и Y11 = Y22 = -Y12 = -Y21 = для конденсаторов достаточно. Числовое преобразование показано в таблице ниже.
узел | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | -j0.0093682 | 0.0093682 | ||
2 | 0.0093682 | j0.00578933 | j0.00666462 | |
3 | j0.00666462 | j0.00578933 | 0.0093682 | |
4 | 0.0093682 | -j0.0093682 |
Удаление внутренних узлов
[ редактировать ]Поскольку порты подключены только к узлу 1 и узлу 4, узлы 2 и 3 необходимо удалить посредством сокращения Kron . В таблице ниже показана уменьшенная матрица параметров Y моделирования примера фильтра Чебышева после исключения узлов 2 и 4. Узлы сокращенной таблицы перенумерованы на 1 и 2.
узел | 1 | 2 |
---|---|---|
1 | j0.0372422 | -j0.0536574 |
2 | -j0.0536574 | j0.0372422 |
Преобразование в матрицу параметров S
[ редактировать ]Поскольку частотная характеристика Чебышева наблюдается из матрицы S-параметров, а именно |S12|, следующим шагом является преобразование матрицы Y-параметров в матрицу S-параметров, используя хорошо известные преобразования Y-матрицы в S-матрицу с импедансом порта в качестве характеристики. импеданс (или характеристический адмиттанс) для каждого узла.
Параметры моделирования S также позволяют выполнять полезную обработку после моделирования для таких вещей, как групповая задержка и фазовая задержка .
узел | 1 | 2 |
---|---|---|
1 | -0,356328 + j0,280539 | 0,551322 + j0,700266 |
2 | 0,551322 + j0,700266 | -0,356328 + j0,280539 |
Значения параметра S
[ редактировать ]Поскольку ожидается, что частотная характеристика Чебышева будет наблюдаться в |S12| в качестве отклика с равной пульсацией 1 дБ в диапазоне от 0 до 1 ГГц, комплексные записи S-параметров необходимо преобразовать в соответствующие величины, используя стандартный стандарт. .
узел | 1 | 2 |
---|---|---|
1 | 0.45351050 | 0.89125104 |
2 | 0.89125104 | 0.45351050 |
Проверьте результаты
[ редактировать ]На этом этапе может оказаться полезным выполнить несколько быстрых проверок достоверности. Поскольку в примере требования к конструкции фильтра Чебышева предусмотрено ослабление -1 дБ на частоте среза 1 ГГц, |S12| на частоте 1 ГГц ожидается -1 дБ. Кроме того, поскольку все элементы моделирования не содержат потерь, хорошо известное соотношение |S 11 | 2 +|С 12 | 2 = 1 [10] применяется на всех частотах, включая 1 ГГц.
необходимое условие | фактические результаты | Статус | |
---|---|---|---|
1 | 20log 10 (|S12|) = -1 дБ | 20log 10 (0,89125104) = -1 дБ | Действительный |
2 | |С 12 | 2 +|С 12 | 2 = 1 | 0.45351050 2 +0.89125104 2 = 1 | Действительный |
Полночастотное моделирование
[ редактировать ]Последней проверкой на достоверность этого примера является моделирование частотной характеристики фильтра Чебышева во всем полезном диапазоне, который в данном случае будет принят равным от 100 МГц до 5 ГГц. Этот диапазон должен позволять просматривать равномерную пульсацию |S12| полосы пропускания между 0 и -1 дБ, несколько крутая полоса заграждения |S12| спад на частоте 1 ГГц и равномерная пульсация |S12| при ожидаемых пиковых значениях 20log10(0,4535...) = -6,86825 дБ.
Поскольку все выходные данные моделирования соответствуют ожидаемым результатам, симуляция примера фильтра Чебышева подтверждается как правильная.
Имитация незавершенных узлов
[ редактировать ]Поскольку параметры S требуют завершения на всех моделируемых узлах, моделирование значения параметра S для незавершенных узлов, таких как внутренние узлы сети, технически не поддерживается. Однако размещение резистивного завершения на незавершенных узлах, достаточно большого, чтобы не вносить какой-либо существенной ошибки, приводящей к завершению узлов, достаточно для точного моделирования узла. Например, два внутренних узла, которые были исключены выше, в качестве альтернативы могли иметь подключенный к ним порт 1e+09 Ом, поэтому вместо использования редукции Крона для исключения узлов можно было бы точно смоделировать узлы с помощью чрезмерно больших резистивных портов.
Моделирование источников нулевого сопротивления
[ редактировать ]Если входной источник в сеть представляет собой идеальный источник напряжения без сопротивления, приведенный выше пример можно заставить работать, включив сопротивление порта, достаточно маленькое, чтобы не вносить каких-либо значимых ошибок. Например, порт с сопротивлением 1e-09 в сети, которая заканчивается в другом месте на 50 Ом, будет моделировать идеальный источник с достаточной точностью.
Моделирование передаточной функции
[ редактировать ]Поскольку приведенный выше пример моделирует параметры S, необходимо еще одно преобразование для получения передаточной функции из параметров S. Преобразование это, . [10]
См. также
[ редактировать ]Концепции:
ЛПВП:
Списки:
- Список программного обеспечения для электротехники
- Список бесплатных симуляторов электронных схем
- Сравнение программного обеспечения EDA
Программное обеспечение:
Ссылки
[ редактировать ]- ^ «Недостатки и преимущества симуляций в онлайн-образовании» . Архивировано из оригинала 16 декабря 2010 г. Проверено 11 марта 2011 г.
- ^ Менге и Виньа, Поступление в Марнский университет в Валле.
- ^ Фишвик, П. «Поступление в Университет Флориды» . Архивировано из оригинала 19 мая 2000 г.
- ^ Педро, Дж; Карвальо, Н. «Поступление в университет Авейру, Португалия» (PDF) . Архивировано из оригинала (PDF) 7 февраля 2012 г. Проверено 27 апреля 2007 г.
- ^ Л. Уокен и М. Брукнер, Мультимодальная технология, управляемая событиями. Архивировано 5 мая 2007 г. в Wayback Machine.
- ^ Пейович, П.; Максимович, Д. (13 мая 1995 г.). «Новый алгоритм моделирования систем силовой электроники с использованием кусочно-линейных моделей устройств» . Транзакции IEEE по силовой электронике . 10 (3): 340–348. Бибкод : 1995ITPE...10..340P . doi : 10.1109/63.388000 – через IEEE Xplore.
- ^ Аллмелинг, Дж. Х.; Хаммер, В.П. (13 июля 1999 г.). «PLECS-кусочное моделирование линейных электрических цепей для Simulink» . Материалы Международной конференции IEEE 1999 г. по силовой электронике и приводным системам. PEDS'99 (Кат.№99TH8475) . Том. 1. С. 355–360, т. 1. дои : 10.1109/PEDS.1999.794588 . ISBN 0-7803-5769-8 . S2CID 111196369 – через IEEE Xplore.
- ^ Онари, Микихико (1998). Имитационная инженерия . Омша. ISBN 9784274902178 . Проверено 12 октября 2022 г.
- ^ Зелингер, Г. (1966). Базовый матричный анализ и синтез . Оксфорд, Лондон, Эдинбург, Нью-Йорк, Торонто, Париж, Брауншвейг: Pergamon Press, Ltd., стр. 45–58. ISBN 9781483199061 .
{{cite book}}
: CS1 maint: дата и год ( ссылка ) - ^ Перейти обратно: а б Маттеи, Джордж Л.; Янг, Лео; Джонс, ЕМТ (1984). Микроволновые фильтры, схемы согласования по наглости и структуры связи . 610 Washington Street, Дедхэм, Массачусетс, США: Artech House, Inc. (опубликовано в 1985 г.). п. 44. ИСБН 0-89006-099-1 .
{{cite book}}
: Обслуживание CS1: дата и год ( ссылка ) Обслуживание CS1: местоположение ( ссылка )