Обучение на основе скорости
Обучение на основе скорости ( VBT )-это современный подход к силовой тренировке и силовой тренировке, который использует технологию отслеживания скорости для предоставления богатых объективных данных в качестве средства для мотивации и поддержки корректировок в реальном времени в плане тренировок спортсмена. прочности и программирования мощности и периодического периода Типичные планы [ 1 ] [ 2 ] Полагайтесь на манипулирование повторениями, наборами и нагрузками в качестве средства для калибровки тренировочных стрессоров в стремлении к конкретной адаптации . С конца 1990 -х годов инновации в технологии мониторинга скорости стержня приближают обучение на основе скорости к основному потоку, поскольку диапазон аппаратных и программных решений для измерения скоростей упражнений стал проще в использовании и более доступным. Обучение на основе скорости имеет широкий спектр вариантов использования и применения в силе и кондиционировании. К ним относятся спортивные состязания штанги, такие как пауэрлифтинг [ 3 ] и олимпийская тяжелая атлетика и кроссфит , а также скалолазание [ 4 ] . [ 5 ] С данными, поддерживающими много решений периодической промышленности для тренеров в тренажерном зале и на поле. [ 6 ]
Чаще всего обучение на основе скорости используется по прочности составной силы и движениям мощности, таких как приседания, тяга, жим лежа [ 7 ] и олимпийские вариации. Значения, такие как средняя скорость, средняя движущая скорость и пиковая скорость регистрируются в метрах в секунду (м/с) [ 7 ] и зарегистрировался с течением времени, чтобы отслеживать производительность и уровни усталости у отдельных спортсменов, команд или когортов.
Физиология обучения на основе скорости
[ редактировать ]Обучение на основе скорости построено на принципе обучения намерения двигаться и второго закона движения Ньютона .
Intent to Move
[edit]When training for strength and power, athlete should aim to apply as much intent as possible to their movements. By trying to lift weights as explosively as possible, an athlete will accelerate and increase the recruitment of their largest, most powerful type II motor units through the Henneman Size Principle. This higher effort and intent in training in turn increases rate of force development, preferential type II fibre hypertrophy through the SAID principle.[7]
Until recently, tracking this intent relied on a keen coaches eye and subjective feedback methods. The ability to track and monitor objective metrics such as velocity and power has become a key coaching tool for providing motivation to athletes, improving training adaptations and reinforcing this higher intent to training.[8][9]
The load velocity profile
[edit]In most traditional strength movements, as the amount of load an athlete aims to lift increases, the velocity at which they are able to move decreases.[10] The relationship between load and velocity follow a predictable and consistent linear pattern.[11][12] The stability of this load velocity relationship has made Velocity Based Training a useful tool to be able to predict and estimate strength levels, fatigue and readiness to train.[11][13]
The load power profile
[edit]Similarly to the velocity profile, power and load share a stable relationship, however its shape is a single factor polynomial, with the point of peak power occurring between 30 and 80% of 1RM varying based on the exercise and individual.[14][15]
Minimum velocity threshold
[edit]The minimum velocity threshold (MVT) is the slowest velocity at which a repetition can be completed for a given exercise.[11] This value is therefore synonymous with the 1 repetition maximum,[3] a common test and indication of an athletes strength levels and progress in the gym. The MVT has been shown to be consistent for a number of common strength training exercises,[3][7] although the homogeneity of the research cohorts, variations in lifting technique and differences in velocity values given by different tracking technologies used across exercises may suggest a wider level of individual variation in the minimum velocity values than is currently presented[citation needed].
Velocity based training use cases
[edit]Velocity based training has many varied uses and applications in training.[11] While the use of standardised speed zones have been historically popular for the pursuit of specific training qualities,[6][16] recent research has highlighted that high variations can exist between individuals, and therefore individualisation of load velocity profiling and VBT program design can lead to superior training adaptations.[17][18]
Feedback and motivation
[edit]By using velocity as a marker of quality in strength training, coaches and athletes can take this feedback to motivate and compete on these metrics.[6][8]
Two studies[19][20] showed that providing real-time objective feedback to athletes could lead to instant improvements in jump performance and ultimately greater jump improvements over 6 weeks of training by simply displaying jump performance to the athletes as they completed their repetitions. A further study[8] utilised velocity feedback on the squat exercise in a group of rugby players and showed that those athletes who were exposed to their velocity data during the training session achieved greater improvements in speed and power following the training plan. The addition of an objective target, in this case higher velocity, leads to increases in athlete intrinsic motivation as they pursue personal bests or compete with teammates in the gym environment. This extra motivation can be especially valuable for athletes in certain sports and demographics where strength training can be seen as monotonous.[9][21]
Real-time fatigue monitoring
[edit]When strength training, sets with higher repetition ranges lead to higher levels of muscle damage, metabolite build up and greater fatigue effects.[22] This fatigue often presents itself in the form of decreasing velocity across a training set or session.[23] Through the use of velocity monitoring, coaches and athletes can monitor, in real-time, the amount of fatigue that is accumulating as a product of velocity decrement across a set.[24] Velocity stops can be used to limit the amount of velocity loss that is allowed through either a percentage cut off or by setting a limit on how slowly an athlete is allowed to complete a repetition before they must end their set and begin a rest period.[23] A velocity stop of 20% from the fastest repetition is commonly used to help athletes avoid the negative effects of consistent training to failure.[25][26] Even tighter velocity stops of 5-10% are also common place during tapering or when chasing specific power adaptations.[citation needed] While a velocity loss of 30% and above may have benefits in increasing hypertrophy, this high volume, high fatigue approach to training does also lead to greater type 1 muscle fibre hypertrophy.[27]
Auto-regulation
[edit]Physical performance levels, also known as readiness, are known to fluctuate wildly on a daily or even hourly basis.[28] Lifestyle stressors, sleep quality, nutrition, hormonal fluctuation and general arousal levels can have a significant impact on strength, power, speed and fitness.[29] These variations can make standardised percentage based training programs difficult to implement and often suboptimal for helping athletes maximise their performance over time.[2][17][30]
Coaches, sporting organisations and individual athletes typically monitor their daily readiness levels in order to auto-regulate their training loads and volumes.[31] Technologies such as heart rate variability monitoring, GPS data, blood oxygen sensors, along with subjective readiness questionnaires and regular performance testing is used to adjust and calibrate the optimal training stresses on a daily basis.[32][33]
Velocity tracking can be a vital tool in the auto-regulation of training too.[6][11][18][34] As an athlete trains, coaches can receive and analyse training data for their warm up sets, comparing their velocity and power outputs relative to individual testing baselines or recent contextual training data. Drops in velocity relative to normal during these warm up sets can signify fatigue or low readiness to train, prompting intervention and training load adjustments to match this low readiness to train.[35]
Testing and profiling
[edit]Due to the stable, linear relationship between velocity and load,[10] the load velocity profile can be used to profile an athlete's performance on given exercises over time to track progress and training effectiveness. Many of these testing and profiling scores can be extracted from the standard training process without the need for dedicated testing events.[11][6] The use of spreadsheet formulas allow coaches to collect these values on a consistent basis to monitor trends in strength and power over time.
1 Repetition Maximum (1RM). For some of the most common strength training exercises, standardised values have been developed for estimating an athletes maximum strength levels by extending an athletes load velocity profile for a given exercise and finding its intersection with the point of minimum velocity threshold.[10][7][3][13] This value can be calculated using simple spreadsheet calculations and then logged over time. Many studies have found this to be a strongly linked correlation to actual 1RM values.
Vzero. An alternative metric to the 1RM calculation, Vzero calculates the intersection between the linear load velocity profile and a theoretical velocity of 0 m/s.[10] This can be used as a more general strength tracking value and has better utility for exercises and variations with less reliable 1RM minimum velocity threshold relationships.
Peak Power. Training at loads that elicit peak power is a common and desirable objective in many sports.[33][12][15][14] Many velocity tracking technologies calculate peak and mean power levels providing values in absolute terms and relative to an athlete's bodyweight. This can then be used to adjust training loads in order to maximise power output on every given rep, optimising the training stimulus on any given training day.[36] Tracking peak power relative to bodyweight can provide valuable insights especially for athletes who may be gaining or losing weight in weight class sports or during off-season periods.[37]
Velocity based training devices and technology
[edit]There are a range of laboratory based and commercially available technologies that offer a range of features and options for tracking velocity in the gym.[38][39][40]
Lab based 3D motion capture
[edit]Largely considered the gold standard, large multi-camera, high frame rate systems can accurately track and measure movements in 3D space, giving a high precision picture of bar position, bar path, velocity and power metrics. Whilst these systems are incredibly accurate,[38][39] their cost, size and technical demands in operation make them more suited for academic purposes and have limited application in day to day training for the vast majority gym settings.
With advancements in camera precision and processor capacity, 3D motion sensing systems have become more widely adopted through industries such as virtual reality phone applications, video gaming and driving autonomy.
These same advancements have led to the development of gym and health based velocity and motion tracking systems.[41] These hardware systems are often mounted into a squat rack and programmed to automatically detect and trace athlete movements, providing feedback of movement velocity, range of motion and more.
Linear Positional Transducers (LPT)
[edit]One of the earliest technologies and still one of the most popular to be used in elite sport, a device containing a rotary encoder and string spool is connected to the training implement, unspooling during movement. As this string uncoils and retracts, it transmits positional data to a digital display or smart device, calculating displacement, velocity and power outputs.
Linear positional transducers are a valid and reliable method for measuring bar speed and velocity.[39][40] Some technologies offer X-axis correction to correct for device placement relative to the implement. This offers the ability to measure and display bar path data, while accounting for variance in placement of the device relative to the plane of the movement.
Smart phone applications
[edit]With recent advances in phone technology, camera quality, and phone computational power, the ability to track movements via computer vision without the need for additional hardware has become more widespread. A number of applications are commercially available at affordable prices and even completely free increasing the accessibility of velocity based training beyond elite and professional sporting contexts. These applications already offer high levels of validity and reliability[42][43] for bar path, velocity, range of motion, and power metrics. The affordability, easy of use and reliability of the data makes smartphone applications an appealing option for coaches and athletes at every level.
Accelerometers, IMUs and wearable technology
[edit]Wearable technology incorporating multi-axis accelerometry or inertial motion units (IMU) are common place in a broad range of health and fitness tracking applications.[44][45] Various commercially available wearable and bar mounted accelerometer devices have been validated to measure and track velocity in real time across a range of exercises. Due to their simpler construction and smaller size compared to positional transducers, these units have had a somewhat wider adoption in the fitness world outside elite sport due to portability, convenience and cost. While they have been found to be reliable and valid,[46][47] some inconsistency at slow movement speeds along with interference from bar vibration at high speeds can be problematic.[40][48][49][50]
See also
[edit]- Strength and Conditioning Coach
- Strength training
- Power training
- Ballistic training
- Plyometrics
- Sports periodisation
- Weightlifting
- Powerlifting
- CrossFit
- Programming & Periodization
References
[edit]- ^ Guerriero, Aristide; Varalda, Carlo; Piacentini, Maria Francesca (2018). "The Role of Velocity Based Training in the Strength Periodization for Modern Athletes". Journal of Functional Morphology and Kinesiology. 3 (4): 55. doi:10.3390/jfmk3040055. PMC 7739360. PMID 33466983.
- ^ Jump up to: a b Orange, Samuel T.; Metcalfe, James W.; Robinson, Ashley; Applegarth, Mark J.; Liefeith, Andreas (2019-10-30). "Effects of In-Season Velocity- Versus Percentage-Based Training in Academy Rugby League Players". International Journal of Sports Physiology and Performance. 15 (4): 554–561. doi:10.1123/ijspp.2019-0058. ISSN 1555-0273. PMID 31672928. S2CID 202250276.
- ^ Jump up to: a b c d García-Ramos, Amador; Pérez-Castilla, Alejandro; Villar Macias, Francisco Javier; Latorre-Román, Pedro Á.; Párraga, Juan A.; García-Pinillos, Felipe (2021-04-03). "Differences in the one-repetition maximum and load-velocity profile between the flat and arched bench press in competitive powerlifters". Sports Biomechanics. 20 (3): 261–273. doi:10.1080/14763141.2018.1544662. ISSN 1476-3141. PMID 30526366. S2CID 54477560.
- ^ Banaszczyk, Jędrzej (June 2023). "All You Need To Know For Perfect RFD Measurements With Tindeq Progressor!". StrengthClimbing.
- ^ Balsalobre-Fernández, Carlos; Torres-Ronda, Lorena (2021). "The Implementation of Velocity-Based Training Paradigm for Team Sports: Framework, Technologies, Practical Recommendations and Challenges". Sports. 9 (4): 47. doi:10.3390/sports9040047. PMC 8066834. PMID 33808302.
- ^ Jump up to: a b c d e Mann, J. Bryan; Ivey, Patrick A.; Sayers, Stephen P. (2015). "Velocity-Based Training in Football". Strength & Conditioning Journal. 37 (6): 52–57. doi:10.1519/SSC.0000000000000177. ISSN 1524-1602. S2CID 80114714.
- ^ Jump up to: a b c d e Williams, Tyler D.; Esco, Michael R.; Fedewa, Michael V.; Bishop, Phillip A. (2020). "Bench Press Load-Velocity Profiles and Strength After Overload and Taper Microcyles in Male Powerlifters". The Journal of Strength & Conditioning Research. 34 (12): 3338–3345. doi:10.1519/JSC.0000000000003835. ISSN 1064-8011. PMID 33021581. S2CID 222151053.
- ^ Jump up to: a b c Randell, Aaron D; Cronin, John B; Keogh, Justin W L; Gill, Nicholas D; Pedersen, Murray C (2011). "Effect of Instantaneous Performance Feedback During 6 Weeks of Velocity-Based Resistance Training on Sport-Specific Performance Tests". Journal of Strength and Conditioning Research. 25 (1): 87–93. doi:10.1519/jsc.0b013e3181fee634. ISSN 1064-8011. PMID 21157389. S2CID 34943258.
- ^ Jump up to: a b Hirsch, Steven M.; Frost, David M. (2021). "Considerations for Velocity-Based Training: The Instruction to Move "As Fast As Possible" Is Less Effective Than a Target Velocity". The Journal of Strength & Conditioning Research. 35 (Suppl 1): S89–S94. doi:10.1519/JSC.0000000000003233. ISSN 1064-8011. PMID 31268998. S2CID 195796546.
- ^ Jump up to: a b c d Jidovtseff, Boris; Harris, Nigel K.; Crielaard, Jean-Michel; Cronin, John B. (2011). "Using the load-velocity relationship for 1RM prediction". The Journal of Strength & Conditioning Research. 25 (1): 267–270. doi:10.1519/JSC.0b013e3181b62c5f. ISSN 1064-8011. PMID 19966589. S2CID 207502224.
- ^ Jump up to: a b c d e f Weakley, Jonathon; Mann, Bryan; Banyard, Harry; McLaren, Shaun; Scott, Tannath; Garcia-Ramos, Amador (2021). "Velocity-Based Training: From Theory to Application". Strength & Conditioning Journal. 43 (2): 31–49. doi:10.1519/SSC.0000000000000560. ISSN 1524-1602. S2CID 219783159.
- ^ Jump up to: a b Pérez-Castilla, Alejandro; García-Ramos, Amador (2020-09-15). "Changes in the Load–Velocity Profile Following Power- and Strength-Oriented Resistance-Training Programs". International Journal of Sports Physiology and Performance. 15 (10): 1460–1466. doi:10.1123/ijspp.2019-0840. ISSN 1555-0273. PMID 32932233. S2CID 221747318.
- ^ Jump up to: a b García-Ramos, Amador; Ulloa-Díaz, David; Barboza-González, Paola; Rodríguez-Perea, Ángela; Martínez-García, Darío; Quidel-Catrilelbún, Mauricio; Guede-Rojas, Francisco; Cuevas-Aburto, Jesualdo; Janicijevic, Danica; Weakley, Jonathon (2019-02-27). "Assessment of the load-velocity profile in the free-weight prone bench pull exercise through different velocity variables and regression models". PLOS ONE. 14 (2): e0212085. Bibcode:2019PLoSO..1412085G. doi:10.1371/journal.pone.0212085. ISSN 1932-6203. PMC 6392250. PMID 30811432.
- ^ Jump up to: a b Baker, Daniel; Nance, Steven; Moore, Michael (2001). "The Load That Maximizes the Average Mechanical Power Output During Explosive Bench Press Throws in Highly Trained Athletes". The Journal of Strength & Conditioning Research. 15 (1): 20–24. ISSN 1064-8011.
- ^ Jump up to: a b Baker, D. (2001). "A series of studies on the training of high-intensity muscle power in rugby league football players". Journal of Strength and Conditioning Research. 15 (2): 198–209. ISSN 1064-8011. PMID 11710405.
- ^ Strength and conditioning for sports performance. Ian Jeffreys, Jeremy Moody (2nd ed.). Abingdon, Oxon. 2021. ISBN 978-0-429-33098-8. OCLC 1238031868.
{{cite book}}
: CS1 maint: location missing publisher (link) CS1 maint: others (link) - ^ Jump up to: a b Dorrell, Harry F.; Moore, Joseph M.; Gee, Thomas I. (2020-09-01). "Comparison of individual and group-based load-velocity profiling as a means to dictate training load over a 6-week strength and power intervention". Journal of Sports Sciences. 38 (17): 2013–2020. doi:10.1080/02640414.2020.1767338. ISSN 0264-0414. PMID 32516094. S2CID 219561461.
- ^ Jump up to: a b Caven, Elias J. G.; Bryan, Tom J. E.; Dingley, Amelia F.; Drury, Benjamin; Garcia-Ramos, Amador; Perez-Castilla, Alejandro; Arede, Jorge; Fernandes, John F. T. (2020). "Group versus Individualised Minimum Velocity Thresholds in the Prediction of Maximal Strength in Trained Female Athletes". International Journal of Environmental Research and Public Health. 17 (21): 7811. doi:10.3390/ijerph17217811. PMC 7662485. PMID 33114479.
- ^ Keller, Martin; Lauber, Benedikt; Gottschalk, Marius; Taube, Wolfgang (2015-06-15). "Enhanced jump performance when providing augmented feedback compared to an external or internal focus of attention". Journal of Sports Sciences. 33 (10): 1067–1075. doi:10.1080/02640414.2014.984241. ISSN 0264-0414. PMID 25529245. S2CID 25351577.
- ^ Keller, Martin; Lauber, Benedikt; Gehring, Dominic; Leukel, Christian; Taube, Wolfgang (August 2014). "Jump performance and augmented feedback: Immediate benefits and long-term training effects". Human Movement Science. 36: 177–189. doi:10.1016/j.humov.2014.04.007. PMID 24875045.
- ^ Reynolds, Monica L.; Ransdell, Lynda B.; Lucas, Shelley M.; Petlichkoff, Linda M.; Gao, Yong (2012). "An Examination of Current Practices and Gender Differences in Strength and Conditioning in a Sample of Varsity High School Athletic Programs". The Journal of Strength & Conditioning Research. 26 (1): 174–183. doi:10.1519/JSC.0b013e31821852b7. ISSN 1064-8011. PMID 22201693. S2CID 3899560.
- ^ Izquierdo, M.; Ibañez, J.; Calbet, J.; González-Izal, M.; Navarro-Amézqueta, I.; Granados, C.; Malanda, A.; Idoate, F.; González-Badillo, J.; Häkkinen, K.; Kraemer, W. (2009). "Neuromuscular Fatigue after Resistance Training". International Journal of Sports Medicine. 30 (8): 614–623. doi:10.1055/s-0029-1214379. ISSN 0172-4622. PMID 19382055. S2CID 4053537.
- ^ Jump up to: a b Weakley, Jonathon; Ramirez-Lopez, Carlos; McLaren, Shaun; Dalton-Barron, Nick; Weaving, Dan; Jones, Ben; Till, Kevin; Banyard, Harry (2020-02-01). "The Effects of 10%, 20%, and 30% Velocity Loss Thresholds on Kinetic, Kinematic, and Repetition Characteristics During the Barbell Back Squat". International Journal of Sports Physiology and Performance. 15 (2): 180–188. doi:10.1123/ijspp.2018-1008. ISSN 1555-0273. PMID 31094251. S2CID 155104224.
- ^ Pareja-Blanco, Fernando; Villalba-Fernández, Antonio; Cornejo-Daza, Pedro J.; Sánchez-Valdepeñas, Juan; González-Badillo, Juan José (2019). "Time Course of Recovery Following Resistance Exercise with Different Loading Magnitudes and Velocity Loss in the Set". Sports. 7 (3): 59. doi:10.3390/sports7030059. PMC 6473797. PMID 30836680.
- ^ Galiano, Carlos; Pareja-Blanco, Fernando; Hidalgo de Mora, Javier; Sáez de Villarreal, Eduardo (2020-01-03). "Low-Velocity Loss Induces Similar Strength Gains to Moderate-Velocity Loss During Resistance Training". Journal of Strength and Conditioning Research. 36 (2): 340–345. doi:10.1519/JSC.0000000000003487. ISSN 1064-8011. PMID 31904715. S2CID 209894851.
- ^ Izquierdo-Gabarren, Mikel; González De Txabarri Expósito, Rafael; García-pallarés, Jesús; Sánchez-medina, Luis; De Villarreal, Eduardo Sáez Sáez; Izquierdo, Mikel (June 2010). "Concurrent endurance and strength training not to failure optimizes performance gains". Medicine and Science in Sports and Exercise. 42 (6): 1191–1199. doi:10.1249/MSS.0b013e3181c67eec. ISSN 1530-0315. PMID 19997025. S2CID 38737506.
- ^ Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yáñez-García, J. M.; Morales-Alamo, D.; Pérez-Suárez, I.; Calbet, J. A. L.; González-Badillo, J. J. (July 2017). "Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations". Scandinavian Journal of Medicine & Science in Sports. 27 (7): 724–735. doi:10.1111/sms.12678. PMID 27038416. S2CID 206307295.
- ^ Zourdos, Michael C.; Dolan, Chad; Quiles, Justin M.; Klemp, Alex; Blanco, Rocky; Krahwinkel, Anthony J.; Goldsmith, Jacob A.; Jo, Edward; Loenneke, Jeremy P.; Whitehurst, Michael (2015). "Efficacy of Daily One-Repetition Maximum Squat Training in Well-Trained Lifters". Medicine & Science in Sports & Exercise. 47 (5S): 940. doi:10.1249/01.mss.0000479287.40858.b7. ISSN 0195-9131. S2CID 78078279.
- ^ Ormsbee, Michael J.; Carzoli, Joseph P.; Klemp, Alex; Allman, Brittany R.; Zourdos, Michael C.; Kim, Jeong-Su; Panton, Lynn B. (2019). "Efficacy of the Repetitions in Reserve-Based Rating of Perceived Exertion for the Bench Press in Experienced and Novice Benchers". Journal of Strength and Conditioning Research. 33 (2): 337–345. doi:10.1519/JSC.0000000000001901. ISSN 1064-8011. PMID 28301439. S2CID 36931296.
- ^ Vernon, Alexander; Joyce, Christopher; Banyard, Harry G (2020-04-01). "Readiness to train: Return to baseline strength and velocity following strength or power training". International Journal of Sports Science & Coaching. 15 (2): 204–211. doi:10.1177/1747954119900120. ISSN 1747-9541. S2CID 214562909.
- ^ Androulakis-Korakakis, Patroklos; Fisher, James P.; Kolokotronis, Panagiotis; Gentil, Paulo; Steele, James (2018-08-29). "Reduced Volume 'Daily Max' Training Compared to Higher Volume Periodized Training in Powerlifters Preparing for Competition—A Pilot Study". Sports. 6 (3): 86. doi:10.3390/sports6030086. ISSN 2075-4663. PMC 6162635. PMID 30158433.
- ^ Halson, Shona L. (2014-11-01). "Monitoring Training Load to Understand Fatigue in Athletes". Sports Medicine. 44 (2): 139–147. doi:10.1007/s40279-014-0253-z. ISSN 1179-2035. PMC 4213373. PMID 25200666.
- ^ Jump up to: a b Serpell, Benjamin G.; Strahorn, Joshua; Colomer, Carmen; McKune, Andrew; Cook, Christian; Pumpa, Kate (2019-01-01). "The Effect of Speed, Power, and Strength Training and a Group Motivational Presentation on Physiological Markers of Athlete Readiness: A Case Study in Professional Rugby". International Journal of Sports Physiology and Performance. 14 (1): 125–129. doi:10.1123/ijspp.2018-0177. ISSN 1555-0273. PMID 29893598. S2CID 48361546.
- ^ Shattock, K.; Tee, J. (2020-02-13). "Autoregulation in resistance training : A comparison of subjective versus objective methods". Journal of Strength and Conditioning Research. 36 (3): 641–648. doi:10.1519/JSC.0000000000003530. ISSN 1064-8011. PMID 32058357. S2CID 211111824.
- ^ Невин, Jonpaul (2019). «Ауторегулированная тренировка сопротивления: представляет ли обучение на основе скорости будущее?» Полем Журнал силы и кондиционирования . 41 (4): 34–39. doi : 10.1519/ssc.0000000000000471 . ISSN 1524-1602 . S2CID 86816034 .
- ^ Макгиган, Майкл Р.; Кормак, Стюарт Дж.; Гилл, Николас Д. (декабрь 2013 г.). «Профилирование силы и мощности спортсменов: выбор тестов и как использовать информацию для проектирования программы» . Журнал силы и кондиционирования . 35 (6): 7–14. doi : 10.1519/ssc.000000000000000011 . ISSN 1524-1602 . S2CID 43285594 .
- ^ Ходаи, Мортеза; Олевински, Люсианна; Шадган, Бабак; Кинингем, Роберт Р. (2015). «Быстрая потеря веса в спорте с весовыми категориями» . Современные отчеты о спортивной медицине . 14 (6): 435–441. doi : 10.1249/jsr.0000000000000206 . ISSN 1537-890X . PMID 26561763 . S2CID 21101261 .
- ^ Jump up to: а беременный Appleby, Brendyn B.; Баньярд, Гарри; Кормак, Стюарт Дж.; Ньютон, Роберт У. (ноябрь 2020 г.). «Достоверность и надежность методов для определения смещения штанги в тяжелых приседаниях: последствия для обучения на основе скорости» . Журнал исследований силы и кондиционирования . 34 (11): 3118–3123. doi : 10.1519/jsc.0000000000002803 . ISSN 1064-8011 . PMID 33105362 . S2CID 51952721 .
- ^ Jump up to: а беременный в Мартинес-Кава, Алехандро; Hernández-Belmonte, Alejandro; Кулл-Ибаньес, Хавьер; Моран-Наварро, Рикардо; Гонсалес-Бадильо, Хуан Хосе; Pallarés, Jesús G. (2020-06-10). «Надежность технологий для измерения скорости штанги: последствия для мониторинга тренировки сопротивления » . Plos один . 15 (6): E0232465. Bibcode : 2020ploso..1532465M . Doi : 10.1371/journal.pone.0232465 . ISSN 1932-6203 . PMC 7286482 . PMID 32520952 .
- ^ Jump up to: а беременный в Хирш, Стивен Марк (2018). «Инструмент, анализ и коучинг соображения с обучением на основе скорости» . doi : 10.13140/rg.2.2.30460.49280 .
{{cite journal}}
: CITE Journal требует|journal=
( помощь ) - ^ Kruk, Eline van der; Reijne, Marco M. (2018-07-03). «Точность систем захвата движения человека для спортивных приложений; современный обзор» . Европейский журнал спортивной науки . 18 (6): 806–819. doi : 10.1080/17461391.2018.1463397 . ISSN 1746-1391 . PMID 29741985 . S2CID 13687575 .
- ^ Цетин, онт; Исик, Озкан (2021-11-11). «Обоснованность и надежность приложения MyLift при определении 1-RM для упражнений на приседаниям и приседаниям» . Европейский журнал человеческого движения . 46 : 28–36. doi : 10.21134/eurjhm.2021.46.599 . ISSN 2386-4095 . S2CID 238799550 .
- ^ Тобер, Джейкоб (2022-05-21). «Надежность и обоснованность бета метрики» . MetricVBT . Получено 2022-07-05 .
- ^ Westerterp, KR (апрель 1999 г.). «Оценка физической активности с акселерометрами» . Международный журнал ожирения . 23 (3): S45 - S49. doi : 10.1038/sj.ijo.0800883 . ISSN 1476-5497 . PMID 10368002 . S2CID 22957107 .
- ^ Побер, Дэвид М.; Staudenmayer, John; Рафаэль, Кристофер; Фридсон, Пэтти С. (сентябрь 2006 г.). «Разработка новых методов для классификации режима физической активности с использованием акселерометров» . Медицина и наука в спорте и упражнениях . 38 (9): 1626–1634. doi : 10.1249/01.mss.0000227542.43669.45 . ISSN 0195-9131 . PMID 16960524 .
- ^ Клементе, Филипе Мануэль; Акилдиз, Зеки; Пино-Аорга, Хосе; Рико-Гонсалес, Маркель (январь 2021 г.). «Достоверность и надежность инерционного измерения единицы для оценки скорости штанги: систематический обзор» . Датчики . 21 (7): 2511. Bibcode : 2021senso..21.2511c . doi : 10.3390/s21072511 . PMC 8038306 . PMID 33916801 .
- ^ Пелка, Эдвард; Уильямс, Антонио; Маклафлин, Даниэль; Гадола, Картер; Слэттери, Эрик; Клейтор, Рэндал (2020-07-18). «Сравнение скорости концентрического движения с Push Band 2.0 и захватом движения Vicon во время упражнений на сопротивление» . Архив разбирательства ISBS . 38 (1): 252.
- ^ Слабый, Джонатон; Моррисон, Мэтью; Гарсия-Рамос, Амадор; Джонстон, Рич; Джеймс, Лахлан; Коул, Майкл Х. (2021-03-01). «Достоверность и надежность коммерчески доступных устройств мониторинга тренировок сопротивления: систематический обзор» . Спортивная медицина . 51 (3): 443–502. doi : 10.1007/s40279-020-01382-w . ISSN 1179-2035 . PMC 7900050 . PMID 33475985 .
- ^ Йованович, Младен; Джукич, Иван (2020-10-09). «Внутри единицы надежности и согласие между международными подразделениями коммерчески доступного преобразователя линейного положения и инерционного датчика, установленного на штанге, для измерения скорости движения» . Журнал исследований силы и кондиционирования . doi : 10.1519/jsc.0000000000003776 . ISSN 1064-8011 . PMID 33044368 . S2CID 222302320 .
- ^ Баньярд, Гарри Г.; Носака, Кен; Сато, Кимитаке; Хафф, Г. Грегори (октябрь 2017 г.). «Достоверность различных методов определения скорости, силы и мощности в приседании на заднем плане» . Международный журнал спортивной физиологии и производительности . 12 (9): 1170–1176. doi : 10.1123/ijspp.2016-0627 . ISSN 1555-0265 . PMID 28182500 .
Внешние ссылки
[ редактировать ]- Развитие взрывных спортсменов: использование тренировок на основе скорости у спортсменов доктором Брайаном Манном: через Google Books
- Обучение на основе скорости Nunzio Signore через кинетику человека (международный издатель)