Jump to content

доля Роша

Это схематическая схема полуразделенной двойной системы, в которой более крупный компонент заполняет полость Роша (черная линия).

В астрономии полость Роша — это область вокруг звезды в двойной системе, внутри которой вращающийся материал гравитационно связан с этой звездой. Это примерно каплевидная область, ограниченная критическим гравитационным эквипотенциалом , вершина которой направлена ​​в сторону другой звезды (вершина находится в L 1 лагранжевой точке системы ).

Полость Роша отличается от сферы Роша , которая аппроксимирует гравитационную сферу влияния одного астрономического тела перед лицом возмущений со стороны более массивного тела, вокруг которого оно вращается. Он также отличается от предела Роша , который представляет собой расстояние, на котором объект, удерживаемый вместе только силой тяжести, начинает разрушаться из-за приливных сил . Полость Роша, предел Роша и сфера Роша названы в честь французского астронома Эдуарда Роша .

Определение

[ редактировать ]
Трехмерное представление потенциала Роша в двойной звезде с отношением масс 2 в системе отсчета, вращающейся вместе. Фигуры в форме капель на эквипотенциальном графике внизу рисунка определяют то, что считается лепестками Роша звезд. L 1 , L 2 и L 3 точки Лагранжа , в которых силы (рассматриваемые во вращающейся системе отсчета) уравновешиваются. Масса может перетекать через точку седла L 1 от одной звезды к ее спутнику, если звезда заполняет свою полость Роша. [1]
STL 3D-модель потенциала Роша двух вращающихся тел, представленная наполовину в виде поверхности, наполовину в виде сетки.

В двойной системе с круговой орбитой часто бывает полезно описать систему в системе координат, вращающейся вместе с объектами. В этой неинерциальной системе отсчета необходимо учитывать центробежную силу помимо гравитации . Оба вместе могут быть описаны потенциалом , так что, например, поверхности звезд лежат вдоль эквипотенциальных поверхностей.

Рядом с каждой звездой поверхности с равным гравитационным потенциалом имеют примерно сферическую форму и концентричны с ближайшей звездой. Вдали от звездной системы эквипотенциалы имеют примерно эллипсоидную форму и вытянуты параллельно оси, соединяющей звездные центры. Критический эквипотенциал пересекает себя в системы L 1 лагранжевой точке , образуя двухлепестковую восьмерку с одной из двух звезд в центре каждой доли. Этот критический эквипотенциал определяет доли Роша. [2]

Там, где материя движется относительно вращающейся в одном направлении системы, на нее будет действовать сила Кориолиса . Это невозможно вывести из модели доли Роша, поскольку сила Кориолиса является неконсервативной силой (т. е. не может быть представлена ​​скалярным потенциалом ).

Дальнейший анализ

[ редактировать ]
Потенциальный массив

На графиках гравитационного потенциала L1 , L2 , L3 , L4 , L5 находятся в синхронном вращении с системой. Области красного, оранжевого, желтого, зеленого, голубого и синего цветов представляют собой потенциальные массивы от высокого до низкого. Красные стрелки — вращение системы, черные — относительные движения обломков.

Обломки перемещаются быстрее в области с более низким потенциалом и медленнее в области с более высоким потенциалом. Таким образом, относительные движения мусора на нижней орбите направлены в одном направлении с вращением системы, а на более высокой орбите — в противоположном направлении.

L 1 – точка равновесия гравитационного захвата. Это точка гравитационного отсечения двойной звездной системы. Это минимальное потенциальное равновесие между L1 , L2 , L3 , L4 и L5 . Это самый простой способ перемещения обломков между сферой Хилла (внутренний круг синего и голубого цветов) и общими гравитационными областями (восьмерки желтого и зеленого цветов на внутренней стороне).

Сфера холма и подковообразная орбита

L 2 и L 3 — точки равновесия гравитационного возмущения. Проходя через эти две точки равновесия, обломки могут перемещаться между внешней областью (желтые и зеленые восьмерки на внешней стороне) и общей гравитационной областью двойной системы.

L 4 и L 5 – точки максимального потенциала в системе. Это неустойчивые равновесия. Если соотношение масс двух звезд станет больше, то оранжевая, желтая и зеленая области превратятся в подковообразную орбиту .

Красная область станет орбитой головастика .

Массовый трансфер

[ редактировать ]

Когда звезда «превышает свою полость Роша», ее поверхность выходит за пределы ее полости Роша, и материал, лежащий за пределами полости Роша, может «упасть» в полость Роша другого объекта через первую точку Лагранжа. В бинарной эволюции это называется массопереносом через переполнение полости Роша .

В принципе, массоперенос может привести к полному распаду объекта, поскольку уменьшение массы объекта приводит к сокращению его доли Роша. Однако есть несколько причин, почему этого не происходит в целом. Во-первых, уменьшение массы звезды-донора может привести к уменьшению звезды-донора, что, возможно, предотвратит такой результат. Во-вторых, при переносе массы между двумя компонентами двойной системы угловой момент передается и .В то время как передача массы от более массивного донора к менее массивному аккретору обычно приводит к сокращению орбиты, обратный процесс приводит к расширению орбиты (в предположении сохранения массы и углового момента). Расширение двойной орбиты приведет к менее резкому сокращению или даже расширению доли Роша донора, часто предотвращая разрушение донора.

Чтобы определить стабильность массопереноса и, следовательно, точную судьбу звезды-донора, необходимо принять во внимание, как радиус звезды-донора и ее полости Роша реагируют на потерю массы донора; если звезда в течение длительного времени расширяется быстрее, чем ее полость Роша, или сжимается медленнее, чем ее полость Роша, массоперенос будет нестабильным, и звезда-донор может распасться. Если звезда-донор расширяется медленнее или сжимается быстрее, чем ее полость Роша, массообмен в целом будет стабильным и может продолжаться в течение длительного времени.

Перенос массы из-за переполнения полости Роша ответственен за ряд астрономических явлений, включая системы Алголя , повторяющиеся новые звезды ( двойные звезды, состоящие из красного гиганта и белого карлика , которые находятся достаточно близко, чтобы вещество красного гиганта стекало на белый карлик), рентгеновские двойные системы и миллисекундные пульсары . Такой массоперенос за счет переполнения лепестков Роша (RLOF) далее разбивается на три отдельных случая:

Случай А
Случай A RLOF возникает, когда звезда-донор горит водородом . По мнению Нельсона и Эгглтона, существует ряд подклассов. [3] которые воспроизведены здесь:
AD динамический
когда RLOF происходит со звездой с глубокой зоной конвекции . Перенос массы происходит быстро в динамическом масштабе времени звезды и может закончиться полным слиянием .
AR быстрый контакт
аналогично AD, но по мере того, как звезда, на которую быстро нарастает материя, набирает массу, она приобретает физический размер, достаточный для того, чтобы достичь своей собственной полости Роша. В такие моменты система проявляется как контактная двоичная переменная , такая как переменная W Ursae Majoris .
AS медленный контакт
похож на AR, но происходит только короткий период быстрого массопереноса, за которым следует гораздо более длительный период медленного массопереноса. В конце концов звезды вступят в контакт, но к тому моменту, когда это произойдет, они существенно изменились. Переменные Алгола являются результатом таких ситуаций.
AE ранний обгон
аналогично AS, но звезда, набирающая массу, обгоняет звезду, отдающую массу, и эволюционирует за пределы главной последовательности. Звезда-донор может сжаться настолько сильно, что остановит массоперенос, но в конечном итоге массоперенос начнется снова, поскольку звездная эволюция продолжается, что приводит к случаям
AL поздний обгон
случай, когда звезда, которая изначально была донором, вспыхивает сверхновой после того, как другая звезда прошла свой собственный раунд RLOF.
AB бинарный
случай, когда звезды переключаются туда и обратно, между которыми проходит RLOF как минимум три раза (технически это подкласс вышеперечисленного).
АН без обгона
случай, когда звезда, которая изначально была донором, подвергается вспышке сверхновой до того, как другая звезда достигнет фазы RLOF.
АГ гигант
Перенос массы не начинается до тех пор, пока звезда не достигнет ветви красных гигантов , но до того, как она исчерпает свое водородное ядро ​​(после чего система описывается как Случай Б).
Случай Б
Случай B происходит, когда RLOF запускается, в то время как донором является звезда, горящая водород после ядра / горящая водородная оболочка. Этот случай можно разделить на классы Br и Bc. [4] в зависимости от того, происходит ли массоперенос от звезды, в которой преобладает зона излучения (Br), и, следовательно, развивается как ситуация с большинством случаев RLOF для случая A или конвективной зоны (Bc), после которой может возникнуть фаза общей оболочки (аналогично случаю C) . [5] Альтернативное разделение случаев - Ba, Bb и Bc, которые примерно соответствуют фазам RLOF, которые происходят во время синтеза гелия, после синтеза гелия, но до синтеза углерода или после синтеза углерода в высокоразвитой звезде. [6]
Случай С
Случай C происходит, когда RLOF начинается, когда донор находится на стадии горения гелиевой оболочки или после нее. Эти системы наблюдаются реже всего, но это может быть связано с предвзятостью отбора . [7]

Геометрия

[ редактировать ]

Точная форма доли Роша зависит от соотношения масс. , и должен оцениваться численно. Однако для многих целей полезно аппроксимировать полость Роша сферой того же объема. Приблизительная формула радиуса этой сферы:

, для

где и .Функция больше, чем для . Длина A представляет собой орбитальное расстояние системы, а r 1 представляет собой радиус сферы, объем которой приближается к полости Роша с массой M 1 . Точность этой формулы составляет около 2%. [2] Другая приближенная формула была предложена Эгглтоном и выглядит следующим образом:

.

Эта формула дает результаты с точностью до 1% во всем диапазоне соотношения масс. . [8]

  1. ^ Источник
  2. ^ Перейти обратно: а б Пачински, Б. (1971). «Эволюционные процессы в тесных бинарных системах». Ежегодный обзор астрономии и астрофизики . 9 : 183–208. Бибкод : 1971ARA&A...9..183P . дои : 10.1146/annurev.aa.09.090171.001151 .
  3. ^ Нельсон, Калифорния; Эгглтон, П.П. (2001). «Полный обзор двоичной эволюции случая А со сравнением с наблюдаемыми системами типа Алголя». Астрофизический журнал . 552 (2): 664–678. arXiv : astro-ph/0009258 . Бибкод : 2001ApJ...552..664N . дои : 10.1086/320560 . S2CID   119505485 .
  4. ^ Ванбеверен, Д.; Меннекенс, Н. (01 апреля 2014 г.). «Слияние массивных двойных компактных объектов: источники гравитационных волн и места производства элементов r-процесса» . Астрономия и астрофизика . 564 : А134. arXiv : 1307.0959 . Бибкод : 2014A&A...564A.134M . дои : 10.1051/0004-6361/201322198 . ISSN   0004-6361 .
  5. ^ Ванбеверен, Д.; Ренсберген, В. ван; Лур, К. де (30 ноября 2001 г.). Самые яркие бинарные файлы . Springer Science & Business Media. ISBN  9781402003769 .
  6. ^ Бхаттачарья, Д; ван ден Хеувел, EP J (1 мая 1991 г.). «Формирование и эволюция двойных и миллисекундных радиопульсаров». Отчеты по физике . 203 (1): 1–124. Бибкод : 1991PhR...203....1B . дои : 10.1016/0370-1573(91)90064-S . ISSN   0370-1573 .
  7. ^ Подсядловский, Филипп (февраль 2014 г.). «Эволюция бинарных систем» . Аккреционные процессы в астрофизике . стр. 45–88. дои : 10.1017/CBO9781139343268.003 . ISBN  9781139343268 . Проверено 12 августа 2019 г. {{cite book}}: |website= игнорируется ( помогите )
  8. ^ Эгглтон, П.П. (1 мая 1983 г.). «Приближения радиусов лепестков Роша». Астрофизический журнал . 268 : 368. Бибкод : 1983ApJ...268..368E . дои : 10.1086/160960 .

Источники

[ редактировать ]
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 705af8cc4f87a1a5706ec181139cb16c__1722253140
URL1:https://arc.ask3.ru/arc/aa/70/6c/705af8cc4f87a1a5706ec181139cb16c.html
Заголовок, (Title) документа по адресу, URL1:
Roche lobe - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)