Jump to content

Del in cylindrical and spherical coordinates

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

Notes

[edit]
  • This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ):
    • The polar angle is denoted by : it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
    • The azimuthal angle is denoted by : it is the angle between the x-axis and the projection of the radial vector onto the xy-plane.
  • The function atan2(y, x) can be used instead of the mathematical function arctan(y/x) owing to its domain and image. The classical arctan function has an image of (−π/2, +π/2), whereas atan2 is defined to have an image of (−π, π].

Coordinate conversions

[edit]
Conversion between Cartesian, cylindrical, and spherical coordinates[1]
From
CartesianCylindricalSpherical
ToCartesian
Cylindrical
Spherical

Note that the operation must be interpreted as the two-argument inverse tangent, atan2.

Unit vector conversions

[edit]
Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of destination coordinates[1]
CartesianCylindricalSpherical
Cartesian
Cylindrical
Spherical
Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of source coordinates
CartesianCylindricalSpherical
Cartesian
Cylindrical
Spherical

Del formula

[edit]
Table with the del operator in cartesian, cylindrical and spherical coordinates
OperationCartesian coordinates (x, y, z)Cylindrical coordinates (ρ, φ, z)Spherical coordinates (r, θ, φ),
where θ is the polar angle and φ is the azimuthal angleα
Vector field A
Gradient f[1]
Divergence ∇ ⋅ A[1]
Curl ∇ × A[1]
Laplace operator 2f ≡ ∆f[1]
Vector gradient Aβ
Vector Laplacian 2A ≡ ∆A[2]

Directional derivative (A ⋅ ∇)B[3]

Tensor divergence ∇ ⋅ Tγ

Differential displacement d[1]
Differential normal area dS
Differential volume dV[1]
This page uses for the polar angle and for the azimuthal angle, which is common notation in physics. The source that is used for these formulae uses for the azimuthal angle and for the polar angle, which is common mathematical notation. In order to get the mathematics formulae, switch and in the formulae shown in the table above.
Defined in Cartesian coordinates as . An alternative definition is .
Defined in Cartesian coordinates as . An alternative definition is .

Calculation rules

[edit]
  1. (Lagrange's formula for del)
  2. (From [4] )

Cartesian derivation

[edit]

The expressions for and are found in the same way.

Cylindrical derivation

[edit]

Spherical derivation

[edit]

Unit vector conversion formula

[edit]

The unit vector of a coordinate parameter u is defined in such a way that a small positive change in u causes the position vector to change in direction.

Therefore, where s is the arc length parameter.

For two sets of coordinate systems and , according to chain rule,

Now, we isolate the th component. For , let . Then divide on both sides by to get:

See also

[edit]

References

[edit]
  1. ^ Jump up to: a b c d e f g h Griffiths, David J. (2012). Introduction to Electrodynamics. Pearson. ISBN 978-0-321-85656-2.
  2. ^ Arfken, George; Weber, Hans; Harris, Frank (2012). Mathematical Methods for Physicists (Seventh ed.). Academic Press. p. 192. ISBN 9789381269558.
  3. ^ Weisstein, Eric W. "Convective Operator". Mathworld. Retrieved 23 March 2011.
  4. ^ Fernández-Guasti, M. (2012). "Green's Second Identity for Vector Fields". ISRN Mathematical Physics. 2012. Hindawi Limited: 1–7. doi:10.5402/2012/973968. ISSN 2090-4681.
[edit]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 70438eede4bd931479efa996902c63c3__1722010080
URL1:https://arc.ask3.ru/arc/aa/70/c3/70438eede4bd931479efa996902c63c3.html
Заголовок, (Title) документа по адресу, URL1:
Del in cylindrical and spherical coordinates - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)