Турбонасос
Турбонасос — это топливный насос с двумя основными компонентами: ротодинамическим насосом и приводной газовой турбиной , обычно оба установлены на одном валу или иногда соединены вместе. Первоначально они были разработаны в Германии в начале 1940-х годов. Целью турбонасоса является производство жидкости под высоким давлением для подачи в камеру сгорания или для других целей. Хотя существуют и другие варианты использования, чаще всего они встречаются в жидкостных ракетных двигателях.
В турбонасосах используются два распространенных типа насосов: центробежный насос , в котором перекачка осуществляется путем выбрасывания жидкости наружу с высокой скоростью, или насос с осевым потоком , в котором чередующиеся вращающиеся и статические лопасти постепенно повышают давление жидкости.
Насосы с осевым потоком имеют малые диаметры, но обеспечивают относительно небольшое повышение давления. Хотя необходимы несколько ступеней сжатия, осевые насосы хорошо работают с жидкостями низкой плотности. Центробежные насосы гораздо более мощны для жидкостей с высокой плотностью, но требуют больших диаметров для жидкостей с низкой плотностью.
История
[ редактировать ]
Раннее развитие
[ редактировать ]Насосы высокого давления для более крупных ракет обсуждались пионерами ракетостроения, такими как Герман Оберт . [ 1 ] В середине 1935 года Вернер фон Браун инициировал проект топливного насоса в юго-западной немецкой фирме Klein, Schanzlin & Becker , которая имела опыт производства больших пожарных насосов. [ 2 ] : 80 В конструкции ракеты Фау-2 для питания неуправляемого турбонасоса использовалась перекись водорода, разлагаемая парогенератором Вальтера. [ 2 ] : 81 производился на заводе Heinkel в Йенбахе , [ 3 ] поэтому турбонасосы V-2 и камера сгорания были проверены и согласованы, чтобы предотвратить создание избыточного давления в камере. [ 2 ] : 172 Первый двигатель успешно заработал в сентябре, а 16 августа 1942 года пробная ракета остановилась в воздухе и разбилась из-за отказа турбонасоса. [ 2 ] [ нужна проверка ] Первый успешный запуск Фау-2 состоялся 3 октября 1942 года. [ 4 ]
Разработка с 1947 по 1949 год.
[ редактировать ]Главным инженером по разработке турбонасосов в Aerojet был Джордж Боско . Во второй половине 1947 года Боско и его группа узнали о работах других насосов и провели предварительные проектные исследования. Представители Aerojet посетили Университет штата Огайо , где Флоран работал над водородными насосами, и проконсультировались с Дитрихом Зингельманном , немецким экспертом по насосам из Wright Field. Впоследствии Боско использовал данные Зингельмана при разработке первого водородного насоса Aerojet. [ 5 ]
К середине 1948 года Aerojet выбрала центробежные насосы как для жидкого водорода , так и для жидкого кислорода . Они получили от ВМФ несколько немецких радиально-лопастных насосов и испытали их во второй половине года. [ 5 ]
К концу 1948 года компания Aerojet спроектировала, изготовила и испытала насос для жидкого водорода (диаметром 15 см). Первоначально использовались шарикоподшипники , которые работали чистыми и сухими, поскольку низкая температура делала обычную смазку непрактичной. Сначала насос работал на низких скоростях, чтобы его детали остыли до рабочей температуры . Когда датчики температуры показали, что жидкий водород достиг насоса, была предпринята попытка разогнаться с 5000 до 35 000 оборотов в минуту. Насос вышел из строя, и осмотр деталей показал, что вышел из строя подшипник, а также крыльчатка . После некоторых испытаний были использованы сверхточные подшипники, смазываемые маслом, распыляемым и направляемым потоком газообразного азота. При следующем запуске подшипники работали удовлетворительно, но напряжения оказались слишком велики для припаянной крыльчатки, и она разлетелась на части. Новый был изготовлен методом фрезерования из цельного куска алюминия . Следующие два запуска с новым насосом оказались большим разочарованием; Приборы не показали значительного повышения расхода или давления. Проблема была отслежена до выхода диффузор насоса, который был слишком мал и недостаточно охлаждался во время цикла охлаждения, поэтому ограничивал поток. Это было исправлено добавлением вентиляционных отверстий в корпусе насоса; вентиляционные отверстия открывались во время охлаждения и закрывались, когда насос был холодным. Благодаря этому исправлению в марте 1949 года было выполнено два дополнительных запуска, и оба оказались успешными. Было обнаружено, что скорость потока и давление примерно соответствуют теоретическим предсказаниям. Максимальное давление составляло 26 атмосфер (26 атм (2,6 МПа; 380 фунтов на квадратный дюйм)) и расход 0,25 килограмма в секунду. [ 5 ]
После 1949 года
[ редактировать ]Турбонасосы главного двигателя космического челнока вращались со скоростью более 30 000 об/мин, подавая в двигатель 150 фунтов (68 кг) жидкого водорода и 896 фунтов (406 кг) жидкого кислорода в секунду. [ 6 ] компании Electron Rocket В 2018 году двигатель Rutherford стал первым двигателем, которого использовался насос с электроприводом . в полете [ 7 ]
Центробежные турбонасосы
[ редактировать ]
Большинство турбонасосов являются центробежными – жидкость поступает в насос вблизи оси, а ротор разгоняет жидкость до высокой скорости. Затем жидкость проходит через улитку или диффузор, который представляет собой кольцо с множеством расходящихся каналов. Это вызывает увеличение динамического давления по мере потери скорости жидкости. Спиральная камера или диффузор преобразует высокую кинетическую энергию в высокое давление (сотни бар – не редкость), и если противодавление на выходе не слишком велико, можно достичь высоких скоростей потока.
Осевые турбонасосы
[ редактировать ]
Существуют также осевые турбонасосы. В этом случае ось по существу имеет гребные винты, прикрепленные к валу, и жидкость вытесняется ими параллельно главной оси насоса. Как правило, осевые насосы имеют тенденцию создавать гораздо более низкое давление, чем центробежные насосы, и давление в несколько бар не является редкостью. Их преимуществом является гораздо более высокий объемный расход. По этой причине они обычно используются для перекачки жидкого водорода в ракетных двигателях из-за его гораздо более низкой плотности, чем у других видов топлива, в которых обычно используются конструкции центробежных насосов. Осевые насосы также обычно используются в качестве «индукторов» для центробежных насосов, которые повышают давление на входе центробежного насоса настолько, чтобы предотвратить чрезмерной кавитации возникновение в нем .
Сложности центробежных турбонасосов
[ редактировать ]Турбонасосы имеют репутацию устройств, которые чрезвычайно сложно спроектировать для достижения оптимальной производительности. Хотя хорошо спроектированный и отлаженный насос может обеспечить КПД 70–90%, цифры менее половины не являются редкостью. Низкая эффективность может быть приемлемой в некоторых приложениях, но в ракетной технике это серьезная проблема. Турбонасосы в ракетах важны и настолько проблематичны, что использующие их ракеты-носители язвительно описываются как «турбонасос с прикрепленной к ним ракетой» - на эту область относят до 55% общей стоимости. [ 8 ]
Общие проблемы включают в себя:
- избыточный поток из обода высокого давления обратно во впуск низкого давления по зазору между корпусом насоса и ротором,
- чрезмерная рециркуляция жидкости на входе,
- чрезмерное завихрение жидкости при выходе из корпуса насоса,
- разрушающая кавитация поверхностей лопаток рабочего колеса в зонах низкого давления.
Кроме того, решающее значение имеет точная форма самого ротора.
Привод турбонасосов
[ редактировать ]Турбонасосы с приводом от паровой турбины применяются при наличии источника пара, например, котлах пароходов в . Газовые турбины обычно используются, когда электричество или пар недоступны, а ограничения по месту или весу позволяют использовать более эффективные источники механической энергии.
Одним из таких случаев являются ракетные двигатели , которым необходимо закачивать топливо и окислитель в камеру сгорания . Это необходимо для больших жидкостных ракет , поскольку заставить течь жидкости или газы путем простого повышения давления в баках часто невозможно; высокое давление, необходимое для требуемой скорости потока, потребует прочных и, следовательно, тяжелых резервуаров.
ПВРД также обычно оснащаются турбонасосами, при этом турбина приводится в движение либо непосредственно внешним набегающим потоком воздуха, либо внутренним потоком воздуха, отводимым от входа в камеру сгорания. В обоих случаях поток выхлопных газов турбины сбрасывается за борт.
См. также
[ редактировать ]- Турбоэспандер
- Газогенераторный цикл
- Поэтапный цикл сгорания
- Экспандерный цикл
- Компоненты реактивных двигателей
Ссылки
[ редактировать ]- ^ Ракета в планетарные пространства; 1923 год
- ^ Jump up to: а б с д Нойфельд, Майкл Дж. (1995). Ракета и Рейх . Смитсоновский институт . стр. 80–1, 156, 172. ISBN. 0-674-77650-Х .
- ^ Ордуэй, Фредерик I III ; Шарп, Митчелл Р. (1979). Ракетная команда . Космическая серия Apogee Books 36. Нью-Йорк: Томас Ю. Кроуэлл. п. 140. ИСБН 1-894959-00-0 . Архивировано из оригинала 4 марта 2012 г.
- ^ Дорнбергер, Вальтер (1954) [1952]. Выстрел в космос / Фау-2 . Американский перевод с немецкого. Эсслинган; Нью-Йорк: Бехтле Верлаг (немецкий); Викинг Пресс (английский). п. 17 .
- ^ Jump up to: а б с «Жидкий водород как двигательное топливо, 1945-1959» . НАСА . Архивировано из оригинала 25 декабря 2017 г. Проверено 12 июля 2017 г.
- ^ Хилл, П. и Петерсон, К. (1992) Механика и термодинамика движения. Нью-Йорк: Аддисон-Уэсли ISBN 0-201-14659-2
- ^ Брюгге, Норберт. «Электронное движение» . B14643.de. Архивировано из оригинала 26 января 2018 года . Проверено 20 сентября 2016 г.
- ^ Ву, Юлин и др. Вибрация гидравлических машин. Берлин: Спрингер, 2013.
Внешние ссылки
[ редактировать ]
- Книга о ракетном движении
- МЛ «Джо» Стэнгеланд (лето 1988 г.). «Турбонасосы для жидкостных ракетных двигателей» . Порог – Инженерный журнал энергетических технологий . Рокетдайн . Архивировано из оригинала 24 сентября 2009 г.