Jump to content

Рассеяние несущих

(Перенаправлено из Рассеяние дефектов )

Типы дефектов включают атомные вакансии, адатомы , ступеньки и изломы, которые чаще всего возникают на поверхностях из-за конечного размера материала, вызывающего неоднородность кристалла. Общим для всех типов дефектов, будь то поверхностные или объемные, является то, что они создают оборванные связи , которые имеют определенные уровни энергии электронов, отличные от объемных. Это различие возникает потому, что эти состояния не могут быть описаны с помощью периодических волн Блоха из-за изменения потенциальной энергии электронов, вызванного отсутствием ионных остовов сразу за пределами поверхности. Следовательно, это локализованные состояния, которые требуют отдельных решений уравнения Шредингера, чтобы можно было правильно описать энергии электронов. Нарушение периодичности приводит к уменьшению проводимости из-за рассеяния дефектов .

Электронные энергетические уровни оборванных связей полупроводника

[ редактировать ]
Рисунок 1: Энергетическая диаграмма Харрисона энергий электронов на разных стадиях формирования кристалла Si. Вертикальная ось — энергия. Орбитали 3s и 3p гибридизуются на одном атоме Si, что энергетически невыгодно, поскольку электроны 2 3s получают больше энергии, чем теряют электроны 2 3p. Благоприятное образование димера образует связывающее (b) и разрыхляющее (b*) состояния, что в конечном итоге приводит к чистой потере энергии, а последующее добавление атомов создает кристаллы, образующие зоны проводимости (CB) и валентную зону (VB). Оборванные состояния связи (db) эквивалентны отсутствующему sp 3 связь.

Более простой и качественный способ определения уровней энергии оборванных связей — с помощью диаграмм Харрисона. [1] [2] Металлы имеют ненаправленные связи и небольшую дебаевскую длину , что из-за их заряженной природы делает оборванные связи несущественными, если их вообще можно считать существующими. Полупроводники являются диэлектриками , поэтому электроны могут чувствовать и захватываться дефектными энергетическими состояниями. Энергетические уровни этих состояний определяются атомами, из которых состоит твердое тело. На рис. 1 представлена ​​диаграмма Хариссона для элементарного полупроводника Si. Слева направо s-орбитальная и p-орбитальная гибридизация способствует sp. 3 связь, которая при множественном sp 3 Димеры Si-Si объединяются, образуя твердое тело, определяющее зоны проводимости и валентную зону. Если бы существовала вакансия, например, на каждом атоме на границе раздела твердое тело/вакуум, это привело бы как минимум к одному нарушенному sp. 3 связь, которая имеет энергию, равную энергии одиночных самогибридизованных атомов Si, как показано на рисунке 1. Эта энергия соответствует примерно середине запрещенной зоны Si, ~ 0,55 эВ над валентной зоной. Конечно, это самый идеальный случай, тогда как ситуация была бы иной, если бы, пассивация связей (см. ниже) и реконструкция поверхности например, произошла . Экспериментально энергии этих состояний можно определить с помощью абсорбционной спектроскопии или рентгеновской фотоэлектронной спектроскопии , например, если чувствительность прибора и/или плотность дефектов достаточно высоки.

Рисунок 2: Энергетическая диаграмма электронов Харрисона для полупроводникового соединения III-IV GaAs. Как и в случае с Si, кристалл построен с добавлением гибридизированных димеров GaAs. Поскольку вакансии вызывают оборванные связи Ga, образующие состояния вблизи CB. Вакансии Ga создают оборванные связи As, имеющие энергии вблизи VB. VB состоит в основном из «As-подобных» состояний, поскольку ионность помещает электроны на атомы As и, как следствие, состояния CB являются «Ga-подобными».

Сложные полупроводники, такие как GaAs, имеют оборванные состояния связи, расположенные ближе к краям зоны (см. рисунок 2). Поскольку связь становится все более ионной, эти состояния могут даже действовать как примеси . Это является причиной хорошо известных трудностей легирования GaN p-типа, когда вакансий N много, из-за высокого давления его паров, что приводит к высокой плотности оборванных связей Ga. Эти состояния расположены близко к краю зоны проводимости и поэтому действуют как доноры. При введении акцепторных примесей p-типа они немедленно компенсируются вакансиями N. Что касается этих мелких состояний, их трактовку часто рассматривают как аналог атома водорода следующим образом для случая анионных или катионных вакансий (эффективная масса дырки m * для катиона и электрона m * для анионных вакансий). Энергия связи E c -E db равна

где U=-q 2 /(4πεε r r) — электростатический потенциал между электроном, занимающим оборванную связь, и его ионным ядром с ε, константой диэлектрической проницаемости свободного пространства, ε r , относительной диэлектрической проницаемостью и r — разделением электрон-ионного ядра. Упрощение, согласно которому энергия поступательного движения электрона KE = -U/2, обусловлено теоремой вириала для центросимметричных потенциалов. Как описано в модели Бора , r подлежит квантованию.
.
Импульс электрона равен p=mv=h/λ такой, что

в результате чего

и
.
Такая обработка теряет точность, поскольку дефекты стремятся отойти от края полосы.

Рассеяние дефектов

[ редактировать ]

Уровни энергии оборванных связей являются собственными значениями волновых функций, описывающих электроны вблизи дефектов. При типичном рассмотрении рассеяния носителей это соответствует конечному состоянию Ферми : золотого правила частоты рассеяния

где H' является параметром взаимодействия, а дельта-функция Дирака δ(E f -E i ), указывающая на упругое рассеяние . Простое соотношение 1/τ= Σ k',k S k'k делает это уравнение полезным для характеристики свойств переноса материала при использовании в сочетании с σ = ne. 2 τ /m* и правило Маттиссена для учета других процессов рассеяния.

Величина S k'k определяется в первую очередь параметром взаимодействия H'. Этот термин различается в зависимости от того, рассматриваются ли мелкие или глубокие государства. Для мелких состояний H' является членом возмущения переопределенного гамильтониана H=H o +H', причем H o имеет энергию собственного значения E i . Матрица для этого случая: [3]

где k' — волновой вектор конечного состояния, который имеет только одно значение, поскольку плотность дефектов достаточно мала, чтобы не образовывать полосы (~<10 10 /см 2 ). Используя уравнение Пуассона для периодических точечных зарядов Фурье,
,
дает коэффициент Фурье потенциала оборванной связи V q =e/(q 2 εε r V), где V — объём. Это приводит к

где q s поправка волнового вектора длины Дебая, обусловленная экранированием заряда. Тогда частота рассеяния равна

где n — объемная плотность дефектов. Выполнение интегрирования с использованием |k|=|k'| дает
.
Вышеуказанное рассмотрение дает сбой, когда дефекты не являются периодическими, поскольку потенциалы оборванных связей представлены рядом Фурье. Упростить сумму в уравнении (10) в n раз удалось только из-за низкой плотности дефектов. Если бы у каждого атома (или, возможно, у каждого другого) была одна оборванная связь, что вполне разумно для нереконструированной поверхности, то необходимо также провести интеграл по k'. Из-за использования теории возмущений при определении матрицы взаимодействия вышеизложенное предполагает малые значения H 'или состояния мелких дефектов вблизи краев зоны. К счастью, золотое правило Ферми само по себе является довольно общим и может быть использовано для дефектов в глубоком состоянии, если взаимодействие между электроном проводимости и дефектом понято достаточно хорошо, чтобы смоделировать их взаимодействие в виде оператора, заменяющего H'.

Экспериментальные измерения

[ редактировать ]
Рисунок 3: (Вверху) Простые развертки напряжения исток-сток с увеличением плотности дефектов можно использовать для определения скорости рассеяния носителей и энергии оборванных связей (красная кривая имеет больше дефектов). (Внизу) Температурная зависимость удельного сопротивления. Вблизи абсолютного нуля обнаруживается вес дефектов рассеяния носителей.

Степень влияния этих оборванных связей на электрический транспорт можно довольно легко наблюдать экспериментально. Путем измерения напряжения на проводнике (рис. 3) можно определить сопротивление и заданную геометрию проводимости образца. Как упоминалось ранее, σ = ne 2 τ /m*, где τ можно определить, зная n и m*, исходя из положения уровня Ферми и зонной структуры материала. К сожалению, это значение содержит эффекты других механизмов рассеяния, например, фононов. Это становится более полезным, когда измерение используется вместе с уравнением (11), где наклон графика зависимости 1/τ от n позволяет вычислить E c -E db , а точка пересечения определяет 1/τ из всех процессов рассеяния, кроме дефектов. Это требует предположения, что рассеяние фононов (среди других, возможно, незначительных процессов) не зависит от концентрации дефектов.
В аналогичном эксперименте можно просто снизить температуру проводника (рис. 3), так что плотность фононов уменьшится до незначительного уровня, что позволит дефектам преобладать в удельном сопротивлении. В этом случае σ = ne 2 τ/m* можно использовать для непосредственного расчета τ рассеяния дефектов.

Пассивация

[ редактировать ]
Рисунок 4: Водородная пассивация полевого транзистора Si металл-оксид-полупроводник (MOSFET) для восстановления Si/SiO 2 состояний интерфейса . Водородные связи с Si полностью удовлетворяют sp 3 гибридизация, обеспечивающая заселение дефектных состояний и предотвращающее рассеяние носителей в эти состояния.

Поверхностные дефекты всегда можно «пассивировать» атомами, чтобы целенаправленно занять соответствующие энергетические уровни, чтобы электроны проводимости не могли рассеиваться в эти состояния (эффективно уменьшая n в уравнении (10)). Например, пассивация Si на границе раздела канал/оксид МОП -транзистора водородом (рис. 4) является типичной процедурой, позволяющей снизить ~10 10 см −2 плотность дефектов до 12 раз [4] тем самым улучшая мобильность и, следовательно, скорость переключения. Удаление промежуточных состояний, которые в противном случае уменьшили бы туннельные барьеры, также уменьшает ток утечки затвора и увеличивает емкость затвора , а также переходный процесс. Эффект заключается в том, что Si sp 3 связь становится полностью удовлетворенной. Очевидным требованием здесь является способность полупроводника окислять пассивирующий атом или, E c -E db + χ > EI , полупроводника с сродством атома к электрону χ и энергией ионизации E I .

Рассеяние фононов

[ редактировать ]

Теперь мы рассмотрим рассеяние носителей с деформациями решетки, называемыми фононами . Рассмотрим объемное смещение, которое производит такая распространяющаяся волна: , что, следовательно, приводит к деформации, зависящей от времени, где для описания распространения фононов используется простая плоская волна, . Смещение атомов от их положений равновесия обычно вызывает изменение электронной зонной структуры (рис. 5), где при рассеянии мы имеем дело с электронами в зоне проводимости с энергией ~ E CB ,
.
Эмпирический параметр Z DP называется деформационным потенциалом и описывает силу электрон-фононного взаимодействия. Умножение на популяцию фононов ( распределение Бозе-Эйнштейна , N q ) дает полный потенциал деформации:

Рисунок 5: Схема изменения краев энергетических зон (зона проводимости E CB и валентная зона E VB ), когда положения атомов кристалла смещаются от равновесия, создавая объемную деформацию.

(причина рута будет ясна ниже). Здесь + соответствует испусканию фононов, а – поглощению фононов во время акта рассеяния. Примечание, потому что для поперечных фононов отличны от нуля только взаимодействия с продольными фононами. Следовательно, полная матрица взаимодействия равна

где дельта Кронекера обеспечивает сохранение импульса и возникает из-за предположения о электронных волновых функциях (конечное состояние, , и начальное состояние, ) также являются плоскими волнами.

Акустические фононы

[ редактировать ]

Используя золотое правило Ферми, можно аппроксимировать скорость рассеяния акустических фононов низкой энергии. Матрица взаимодействия этих фононов имеет вид

с фононной угловой частотой ω q =cq, объемом V, плотностью твердого тела ρ и групповой скоростью фононов c. [5] Подставив это в уравнение 6 дает
.
В предположениях, что N q >>1, ħω<<kT и g(E') ~ g(E) (что обычно справедливо для трехмерных кристаллов, поскольку энергии электронов проводимости обычно намного больше, чем ħω, а g(E) не имеет никакого Ван Сингулярность Хова ) дает скорость рассеяния:




где g(E) — электронная плотность состояний , для которой для получения окончательного ответа использовалось трехмерное решение с параболической дисперсией.

Оптические фононы

[ редактировать ]

Обычно фононы в оптических ветвях колебательно-дисперсионных соотношений имеют энергии порядка kT и выше, поэтому приближения ħω<<kT и N q >>1 сделать невозможно. Тем не менее, разумным путем, который по-прежнему позволяет обойти сложную фононную дисперсию, является использование модели Эйнштейна , которая утверждает, что в твердых телах существует только одна фононная мода. Для оптических фононов это приближение оказывается достаточным из-за очень небольшого изменения наклона ω(q), и, таким образом, мы можем утверждать, что ħω(q) ≅ ħω, константа. Следовательно, N q также является константой (зависящей только от T). Последнее приближение, g(E')=g(E±ħω) ~ g(E), невозможно выполнить, поскольку ħω ~ E, и для него нет обходного пути, но добавленная сложность к сумме для τ минимальна.

.
Сумма превращается в плотность состояний в точке E', и распределение Бозе-Эйнштейна можно исключить из суммы, поскольку ħω(q) ≅ ħω.

Примечания

[ редактировать ]
  1. ^ Харрисон, Уолтер А., Электронная структура и свойства твердых тел: физика химической связи. Сан-Франциско: Фриман, 1980.
  2. ^ Рокетт, Ангус, Материаловедение полупроводников. Нью-Йорк: Спрингер, 2007 г.
  3. ^ Гесс, Карл, Передовая теория полупроводниковых устройств. Нью-Йорк: Wiley Interscience, 2000.
  4. ^ Фонэн, Б.; Ипри, AC IEEE Trans. Электр. Дев. 36 , 101, 1999.
  5. ^ Конвелл, Э.М., «Перенос в сильном поле в полупроводниках», в «Физике твердого тела», изд. Ф. Зейтц, Д. Тернбулл и Х. Эренрайх, Приложение 9. Нью-Йорк: Academic Press, 1967, с. 108.
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 49d310bdeecebed21dbd3cc19b0a45c5__1690898640
URL1:https://arc.ask3.ru/arc/aa/49/c5/49d310bdeecebed21dbd3cc19b0a45c5.html
Заголовок, (Title) документа по адресу, URL1:
Carrier scattering - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)