Дельта Кронекера естественным образом появляется во многих областях математики, физики, техники и информатики как средство компактного выражения ее определения, приведенного выше.
Здесь евклидовы векторы определяются как n -кортежи: и и последний шаг получается путем использования значений дельты Кронекера для уменьшения суммирования по .
Обычно i и j ограничиваются набором формы {1, 2, ..., n } или {0, 1, ..., n − 1} , но дельта Кронекера может быть определена на произвольный набор.
При исследовании цифровой обработки сигналов (DSP) функция единичной выборки представляет собой частный случай двумерной дельта-функции Кронекера где индексы Кронекера включают число ноль и где один из индексов равен нулю. В этом случае:
Или, в более общем смысле, где:
Однако это лишь частный случай. В тензорном исчислении чаще нумеруют базисные векторы в определенном измерении, начиная с индекса 1, а не с индекса 0. В этом случае соотношение не существует, и на самом деле дельта-функция Кронекера и функция единичной выборки — это разные функции, перекрывающиеся в конкретном случае, когда индексы включают число 0, число индексов равно 2, а один из индексов имеет значение ноль.
Хотя функция выборки дискретных единиц и дельта-функция Кронекера используют одну и ту же букву, они различаются следующим образом. Для функции выборки дискретных единиц более привычно помещать один целочисленный индекс в квадратные скобки; напротив, дельта Кронекера может иметь любое количество индексов. Кроме того, назначение функции выборки дискретных единиц отличается от дельта-функции Кронекера. В DSP функция дискретной единичной выборки обычно используется в качестве входной функции для дискретной системы для обнаружения системной функции системы, которая будет получена как выходной сигнал системы. Напротив, типичной целью дельта-функции Кронекера является фильтрация членов из соглашения Эйнштейна о суммировании .
Функция дискретной единичной выборки проще определяется как:
Кроме того, дельта-функцию Дирака часто путают как с дельта-функцией Кронекера, так и с функцией единичной выборки. Дельта Дирака определяется как:
В отличие от дельта-функции Кронекера и функция единичной выборки , дельта-функция Дирака не имеет целочисленного индекса, он имеет одно непрерывное нецелое значение t .
и фактически дельта Дирака была названа в честь дельты Кронекера из-за этого аналогичного свойства. [2] При обработке сигналов «функции» Кронекера и Дирака обычно различаются по контексту (дискретное или непрерывное время). И по соглашению, обычно указывает на непрерывное время (Дирак), тогда как аргументы вроде , , , , , и обычно относятся к дискретному времени (Кронекер). Другая распространенная практика — представлять дискретные последовательности с помощью квадратных скобок; таким образом: . Дельта Кронекера не является результатом прямой выборки дельта-функции Дирака.
При определенных условиях дельта Кронекера может возникнуть в результате выборки дельта-функции Дирака. Например, если дельта-импульс Дирака возникает точно в точке выборки и в идеале подвергается фильтрованию нижних частот (с отсечкой на критической частоте) в соответствии с теоремой о выборке Найквиста-Шеннона , результирующий сигнал дискретного времени будет дельта-функцией Кронекера.
The обобщенная дельта Кронекера или многоиндексная дельта Кронекера порядка это тип тензор, полностью антисимметричный по своей верхних индексах, а также в его более низкие индексы.
Два определения, различающиеся в разы. используются. Ниже представлена версия с ненулевыми компонентами, масштабированными до . Вторая версия имеет ненулевые компоненты, которые , с последующими изменениями коэффициентов масштабирования в формулах, таких как коэффициенты масштабирования в § Свойства обобщенной дельты Кронекера ниже исчезающих. [4]
Для любого целого числа , используя стандартное вычисление остатка , мы можем записать интегральное представление для дельты Кронекера в виде интеграла, приведенного ниже, где контур интеграла движется против часовой стрелки вокруг нуля. Это представление также эквивалентно определенному интегралу при вращении в комплексной плоскости.
Гребенчатая функция Кронекера с периодом определяется (с использованием обозначения DSP ) как:
где и являются целыми числами. Таким образом, гребенка Кронекера состоит из бесконечной серии единичных импульсов, разделенных N единицами, и включает единичный импульс в нуле. Ее можно считать дискретным аналогом гребешка Дирака .
Дельтой Кронекера также называют степень отображения одной поверхности в другую. [13] Предположим, что происходит отображение поверхности S uvw на S xyz , которые являются границами областей R uvw и R xyz , которое просто связано взаимно однозначным соответствием. структуре, если s и t являются параметрами для Suvw каждый , и к из Suvw Suvw ориентирован В этой внешней нормалью n :
а нормаль имеет направление
Пусть x = x ( u , v , w ) , y = y ( u , v , w ) , z = z ( u , v , w ) определены и гладки в области, содержащей S uvw , и пусть эти уравнения определяют отображение S uvw на S xyz . Тогда степень δ отображения равна В 1 / 4π раз телесный угол изображения S изображения S uvw относительно внутренней точки S xyz , O . Если O является началом области R xyz , то степень δ определяется интегралом:
^ Франкель, Теодор (2012). Геометрия физики: Введение (3-е изд.). Издательство Кембриджского университета. ISBN 9781107602601 .
^ Агарвал, округ Колумбия (2007). Тензорное исчисление и риманова геометрия (22-е изд.). Кришна Пракашан Медиа. [ ISBN отсутствует ]
^ Лавлок, Дэвид; Рунд, Ханно (1989). Тензоры, дифференциальные формы и вариационные принципы . Публикации Courier Dover. ISBN 0-486-65840-6 .
^ Рекурсивное определение требует первого случая, который можно принять как δ = 1 для p = 0 или, альтернативно, δ м п = д м ν для p = 1 (обобщенная дельта в терминах стандартной дельты).
^ Хасани, Садри (2008). Математические методы: для студентов-физиков и смежных специальностей (2-е изд.). Спрингер-Верлаг. ISBN 978-0-387-09503-5 .
Arc.Ask3.Ru Номер скриншота №: 9be956e7bd53f4d976b7c1dd5bf4ebaa__1703875980 URL1:https://arc.ask3.ru/arc/aa/9b/aa/9be956e7bd53f4d976b7c1dd5bf4ebaa.html Заголовок, (Title) документа по адресу, URL1: Kronecker delta - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)