Тензорная плотность
В дифференциальной геометрии тензорная плотность или относительный тензор является обобщением концепции тензорного поля . Тензорная плотность преобразуется как тензорное поле при переходе из одной системы координат в другую (см. Тензорное поле ), за исключением того, что она дополнительно умножается или взвешивается на степень W якобиана функции перехода координат или ее абсолютное значение. Тензорная плотность с одним индексом называется векторной плотностью . Различают (аутентичные) тензорные плотности, псевдотензорные плотности, четные тензорные плотности и нечетные тензорные плотности. Иногда тензорные плотности с отрицательным весом W называют тензорной емкостью. [1] [2] [3] Тензорную плотность можно также рассматривать как сечение тензорного произведения тензорного расслоения на расслоение плотности .
Мотивация [ править ]
В физике и смежных областях часто бывает полезно работать с компонентами алгебраического объекта, а не с самим объектом. Примером может быть разложение вектора на сумму базисных векторов, взвешенных по некоторым коэффициентам, таким как
Если мы теперь попытаемся выразить это же выражение в базисе, отличном от стандартного, то компоненты векторов изменятся, скажем, по закону где представляет собой матрицу действительных чисел размером 2 на 2. Учитывая, что площадь развернутого параллелограмма является геометрическим инвариантом, она не может измениться при смене базиса, поэтому новое представление этой матрицы должно быть:
Определение [ править ]
Эта статья нуждается в дополнительных цитатах для проверки . ( сентябрь 2012 г. ) |
Некоторые авторы в этой статье делят тензорные плотности на два типа, называемые (аутентичными) тензорными плотностями и псевдотензорными плотностями. Другие авторы классифицируют их по-другому: на типы, называемые четными тензорными плотностями и нечетными тензорными плотностями. Когда вес тензорной плотности является целым числом, существует эквивалентность между этими подходами, которая зависит от того, является ли целое число четным или нечетным.
Обратите внимание, что эти классификации поясняют различные способы, которыми тензорные плотности могут несколько патологически трансформироваться при преобразованиях координат, изменяющих ориентацию . Независимо от их классификации по этим типам, существует только один способ преобразования тензорных плотностей при сохраняющих преобразованиях координат, ориентацию.
В этой статье мы выбрали соглашение, которое присваивает вес +2 , определитель метрического тензора, выраженный через ковариантные индексы. При таком выборе классические плотности, такие как плотность заряда, будут представлены тензорными плотностями веса +1. Некоторые авторы используют соглашение о знаках для весов, которое является отрицанием представленного здесь. [4]
В отличие от значения, используемого в этой статье, в общей теории относительности « псевдотензор » иногда означает объект, который не трансформируется как тензор или относительный тензор любого веса.
и псевдотензорные плотности Тензорные
Например, смешанная тензорная плотность веса второго ранга (аутентичная) преобразуется как: [5] [6]
- ((аутентичная) тензорная плотность (целого) веса W )
где – плотность тензора второго ранга в система координат, — преобразованная плотность тензора в система координат; и мы используем определитель Якобиана . Поскольку определитель может быть отрицательным, как и при преобразовании координат, меняющем ориентацию, эта формула применима только тогда, когда является целым числом. (Однако см. четные и нечетные плотности тензоров ниже.)
Мы говорим, что тензорная плотность является псевдотензорной плотностью, когда при преобразовании координат, меняющем ориентацию, происходит дополнительная смена знака. Смешанная псевдотензорная плотность веса второго ранга трансформируется как
- (псевдотензорная плотность (целого) веса W )
где знак ( ) — это функция, которая возвращает +1, если ее аргумент положительный, или -1, если ее аргумент отрицательный.
Чётные и нечётные тензорные плотности [ править ]
Преобразования для четных и нечетных тензорных плотностей имеют то преимущество, что они четко определены, даже если не является целым числом. Таким образом, можно говорить, скажем, о нечетной тензорной плотности веса +2 или четной тензорной плотности веса −1/2.
Когда является четным целым числом, приведенную выше формулу для (подлинной) тензорной плотности можно переписать как
- (четная тензорная плотность веса W )
Аналогично, когда является нечетным целым числом, формулу для (подлинной) тензорной плотности можно переписать как
- (нечетная тензорная плотность веса W )
Вес нуля и единицы [ править ]
Тензорная плотность любого типа, имеющая нулевой вес, также называется абсолютным тензором . (Четная) аутентичная тензорная плотность нулевого веса также называется обычным тензором .
Если вес не указан, но слова «относительный» или «плотность» используются в контексте, где необходим определенный вес, обычно предполагается, что вес равен +1.
Алгебраические свойства [ править ]
- Линейная комбинация (также известная как взвешенная сумма ) тензорных плотностей одного типа и веса. снова является тензорной плотностью этого типа и веса.
- Произведение двух тензорных плотностей любых типов и с весами и , – тензорная плотность веса
- Произведение аутентичных тензорных плотностей и псевдотензорных плотностей будет подлинной тензорной плотностью, если четное число факторов является псевдотензорными плотностями; это будет псевдотензорная плотность, когда нечетное число факторов является псевдотензорными плотностями. Аналогично, произведение четных тензорных плотностей и нечетных тензорных плотностей будет четной тензорной плотностью, если четное число факторов является нечетными тензорными плотностями; это будет нечетная плотность тензора, когда нечетное число факторов является нечетной плотностью тензора.
- Сжатие индексов на тензорной плотности с весом снова дает тензорную плотность веса [7]
- Используя (2) и (3), видно, что повышение и понижение индексов с использованием метрического тензора (вес 0) оставляет вес неизменным. [8]
тензорных матрицы Обращение матрицы и определитель плотностей
Если — неособая матрица и тензорная плотность веса второго ранга с ковариантными индексами, то его обратная матрица будет тензорной плотностью веса второго ранга — с контравариантными индексами. Аналогичные утверждения применимы, когда два индекса контравариантны или являются смешанными ковариантными и контравариантными.
Если – тензорная плотность веса второго ранга с ковариантными индексами, то определитель матрицы будет иметь вес где — число измерений пространства-времени. Если – тензорная плотность веса второго ранга с контравариантными индексами, то определитель матрицы будет иметь вес Определитель матрицы будет иметь вес
Общая теория относительности [ править ]
Общая теория относительности |
---|
![]() |
определителя Якобиана и метрического Связь тензора
Любой неособый обыкновенный тензор трансформируется как
где правую часть можно рассматривать как произведение трех матриц. Взяв определитель обеих частей уравнения (поскольку определитель матричного произведения является произведением определителей), разделив обе части на и извлечение их квадратного корня дает
Когда тензор – метрический тензор , и — локально-инерциальная система координат, где diag(−1,+1,+1,+1), метрика Минковского , то −1 и так
где – определитель метрического тензора
метрического тензора для управления плотностью Использование тензора
Следовательно, четная тензорная плотность веса W можно записать в виде
где является обычным тензором. В локально-инерциальной системе координат, где будет так, что и будут представлены теми же числами.
При использовании метрической связи ( связности Леви-Чивита ) ковариантная производная четной тензорной плотности определяется как
Для произвольной связи ковариантная производная определяется добавлением дополнительного члена, а именно
Эквивалентно соблюдается правило произведения
где для метрической связности ковариантная производная любой функции всегда равен нулю,
Примеры [ править ]
Выражение скалярная плотность. По правилам этой статьи он имеет вес +1.
Плотность электрического тока (например, - количество электрического заряда, пересекающего 3-объемный элемент разделенное на этот элемент — не используйте метрику в этом вычислении) — это контравариантная векторная плотность веса +1. Часто пишут как или где и дифференциальная форма являются абсолютными тензорами, и где является символом Леви-Чивита ; см. ниже.
Плотность силы Лоренца (т. е. линейный импульс, передаваемый от электромагнитного поля материи внутри 4-объемного элемента разделенное на этот элемент — не используйте метрику в этом вычислении) — это ковариантная векторная плотность веса +1.
В N -мерном пространстве-времени символ Леви-Чивита можно рассматривать либо как ковариантную (нечетную) подлинную тензорную плотность ранга N веса −1 ( ε α 1 ⋯ α N ), либо как контравариант ранга N (нечетный). аутентичная тензорная плотность веса +1 ( ε α 1 ⋯ α N ). Обратите внимание, что символ Леви-Чивита (так называемый) не подчиняется обычному соглашению о повышении или понижении индексов с помощью метрического тензора. То есть это правда, что
Определитель тензора метрического
См. также [ править ]
- Действие (физика) – Физическая величина измерения энергии × время.
- Закон сохранения - научный закон сохранения физической собственности.
- Теорема Нётер - Утверждение, связывающее дифференцируемые симметрии с сохраняющимися величинами.
- Псевдотензор - Тип физической величины.
- Относительный скаляр
- Вариационный принцип - научные принципы, позволяющие использовать вариационное исчисление.
Примечания [ править ]
- ^ Вайнрайх, Габриэль (6 июля 1998 г.). Геометрические векторы . Издательство Чикагского университета. стр. 112, 115. ISBN. 978-0226890487 .
- ^ Папаставридис, Джон Г. (18 декабря 1998 г.). Тензорное исчисление и аналитическая динамика . ЦРК Пресс . ISBN 978-0849385148 .
- ^ Руис-Толоса, Кастильо, Хуан Р., Энрике (30 марта 2006 г.). От векторов к тензорам . Springer Science & Business Media. ISBN 978-3540228875 .
{{cite book}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - ^ Например, Weinberg 1972, стр. 98. Выбранное соглашение включает в приведенные ниже формулы определитель Якобиана обратного перехода x → x , в то время как противоположное соглашение рассматривает прямой переход x → x, приводящий к смене знака веса.
- ^ г-н Шпигель; С. Липшуц; Д. Спеллман (2009). Векторный анализ (2-е изд.). Нью-Йорк: Серия набросков Шаума. п. 198. ИСБН 978-0-07-161545-7 .
- ^ CB Паркер (1994). Энциклопедия физики МакГроу Хилла (2-е изд.). МакГроу-Хилл. п. 1417 . ISBN 0-07-051400-3 .
- ^ Вайнберг 1972 стр. 100.
- ^ Вайнберг 1972 стр. 100.
Ссылки [ править ]
- Спивак, Майкл (1999), Всеобъемлющее введение в дифференциальную геометрию, Том I (3-е изд.), Стр. 134 .
- Купцов, Л.П. (2001) [1994], «Тензорная плотность» , Энциклопедия математики , EMS Press .
- Чарльз Миснер ; Кип С. Торн и Джон Арчибальд Уиллер (1973). Гравитация . У. Х. Фриман . п. 501 и далее. ISBN 0-7167-0344-0 .
{{cite book}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - Вайнберг, Стивен (1972), Гравитация и космология , John Wiley & sons, Inc, ISBN 0-471-92567-5