АКТ-Р
![]() | |
Оригинальный автор(ы) | Джон Роберт Андерсон |
---|---|
Стабильная версия | 7.21.6-<3099:2020-12-21> / 21 декабря 2020 г [1] |
Написано в | Общий Лисп |
Тип | Когнитивная архитектура |
Лицензия | GNU LGPL v2.1 |
Веб-сайт | акт-р |
ACT-R (произносится /ˌækt ˈɑr/; сокращение от « Адаптивный контроль над мышлением — рациональный ») — это когнитивная архитектура, разработанная в основном Джоном Робертом Андерсоном и Кристианом Лебьером в Университете Карнеги-Меллона . Как и любая когнитивная архитектура, ACT-R стремится определить базовые и нередуцируемые когнитивные и перцептивные операции, которые обеспечивают работу человеческого разума. Теоретически каждая задача, которую может выполнить человек, должна состоять из серии этих дискретных операций.
Большинство основных предположений ACT-R также основаны на прогрессе когнитивной нейронауки , и ACT-R можно рассматривать и описывать как способ определения того, как сам мозг организован таким образом, чтобы отдельные модули обработки могли производить познание.
Вдохновение [ править ]
ACT-R был вдохновлен работами Аллена Ньюэлла , и особенно тем, что он всю жизнь отстаивал идею единых теорий как единственного способа по-настоящему раскрыть основы познания. [2] Фактически, Андерсон обычно считает Ньюэлла основным источником влияния на его собственную теорию.
выглядит ACT Как - R
Как и другие влиятельные когнитивные архитектуры (включая Soar , CLARION и EPIC), теория ACT-R имеет вычислительную реализацию в виде интерпретатора специального языка кодирования. Сам интерпретатор написан на Common Lisp и может быть загружен в любой из дистрибутивов языка Common Lisp.
Это означает, что любой исследователь может загрузить код ACT-R с веб-сайта ACT-R, загрузить его в дистрибутив Common Lisp и получить полный доступ к теории в форме интерпретатора ACT-R.
Кроме того, это позволяет исследователям задавать модели человеческого познания в виде скрипта на языке ACT-R. Языковые примитивы и типы данных предназначены для отражения теоретических предположений о человеческом познании. Эти предположения основаны на многочисленных фактах, полученных в результате экспериментов в области когнитивной психологии и визуализации мозга .
Подобно языку программирования , ACT-R представляет собой основу: для различных задач (например, Ханойская башня, память на текст или список слов, понимание языка, общение, управление самолетом) исследователи создают «модели» (т. е. программы). в АКТ-Р.Эти модели отражают предположения разработчиков моделей о задаче в рамках взгляда на познание ACT-R. Затем модель можно будет запустить.
Запуск модели автоматически создает пошаговую симуляцию человеческого поведения, которая определяет каждую отдельную когнитивную операцию (т. е. кодирование и извлечение памяти, визуальное и слуховое кодирование, моторное программирование и выполнение, манипулирование мысленными образами). Каждый шаг связан с количественным прогнозированием задержек и точности. Модель можно протестировать, сравнив ее результаты с данными, собранными в поведенческих экспериментах.
В последние годы ACT-R также был расширен для количественного прогнозирования закономерностей активации в мозге, обнаруженных в экспериментах с фМРТ .В частности, ACT-R был дополнен для прогнозирования формы и продолжительности реакции BOLD в нескольких областях мозга, включая области рук и рта в моторной коре , левую префронтальную кору , переднюю поясную извилину и базальную кору . ганглии .
Краткое содержание [ править ]
Самое важное предположение ACT-R заключается в том, что человеческое знание можно разделить на два нередуцируемых типа представлений: декларативное и процедурное .
В коде ACT-R декларативные знания представлены в виде фрагментов , то есть векторных представлений отдельных свойств, каждое из которых доступно из помеченного слота.
Фрагменты хранятся и становятся доступными через буферы , которые являются интерфейсом модулей , то есть специализированных и в значительной степени независимых структур мозга.
Существует два типа модулей:
- Перцептивно-моторные модули , которые заботятся о взаимодействии с реальным миром (т.е. с симуляцией реального мира). Наиболее развитыми перцептивно-моторными модулями в ACT-R являются зрительный и мануальный модули.
- Модули памяти . В ACT-R имеется два типа модулей памяти:
- Декларативная память , состоящая из таких фактов, как Вашингтон (округ Колумбия) — столица Соединенных Штатов , Франция — страна в Европе или 2+3=5.
- Процедурная память , состоящая из продукций. Продукция представляет собой знания о том, как мы что-то делаем: например, знания о том, как набирать букву «Q» на клавиатуре, как водить машину или как складывать.
Доступ ко всем модулям возможен только через их буферы. Содержимое буферов в данный момент времени представляет состояние ACT-R в этот момент. Единственным исключением из этого правила является процедурный модуль, который хранит и применяет процедурные знания. Он не имеет доступного буфера и фактически используется для доступа к содержимому других модулей.
Процедурные знания представлены в виде продукций . Термин «производство» отражает фактическую реализацию ACT-R как производственной системы , но на самом деле производство — это в основном формальное обозначение, определяющее поток информации из корковых областей (т. е. буферов) в базальные ганглии и обратно. в кору.
В каждый момент внутренний сопоставитель шаблонов ищет продукцию, соответствующую текущему состоянию буферов. В данный момент может быть выполнено только одно такое производство. Это производство при выполнении может модифицировать буферы и, таким образом, изменить состояние системы. Таким образом, в ACT-R познание разворачивается как череда производственных стрельб.
Дебаты о коннекционизме и символике
В когнитивных науках различные теории обычно приписывают либо « символическому », либо « коннекционистскому » подходу к познанию. ACT-R явно принадлежит к «символической» области и классифицируется как таковая в стандартных учебниках и сборниках. [3] Его объекты (куски и продукты) дискретны, а операции синтаксичны, то есть относятся не к семантическому содержанию представлений, а только к их свойствам, которые считают их подходящими для участия в вычислениях. Это ясно видно в слотах чанков и в свойствах сопоставления буферов в продуктах, которые функционируют как стандартные символьные переменные.
Члены сообщества ACT-R, включая его разработчиков, предпочитают думать об ACT-R как об общей структуре, которая определяет, как устроен мозг и как его организация порождает то, что воспринимается (и, в когнитивной психологии, исследуется). как разум, выходящий за рамки традиционных символических/коннекционистских дебатов. Ничто из этого, естественно, не противоречит классификации ACT-R как символической системы, поскольку все символические подходы к познанию направлены на описание разума как продукта функции мозга, использующего определенный класс сущностей и систем для достижения этой цели.
Распространенное заблуждение предполагает, что ACT-R не может быть символической системой, поскольку она пытается охарактеризовать функцию мозга. Это неверно по двум причинам: во-первых, все подходы к компьютерному моделированию познания, символического или иного, должны в некотором отношении характеризовать функцию мозга, потому что разум — это функция мозга. Во-вторых, все подобные подходы, включая коннекционистские подходы, пытаются охарактеризовать сознание на когнитивном уровне описания, а не на нейронном уровне, поскольку только на когнитивном уровне могут быть сохранены важные обобщения. [4]
Дальнейшие недопонимания возникают из-за ассоциативного характера некоторых свойств ACT-R, таких как фрагменты, распространяющие активацию друг на друга, или фрагменты и продукции, несущие количественные свойства, релевантные для их выбора. Ни одно из этих свойств не противоречит фундаментальной природе этих сущностей как символических, независимо от их роли в выборе единиц измерения и, в конечном счете, в вычислениях.
Теория против реализации и Vanilla ACT - R
Важность различия между самой теорией и ее реализацией обычно подчеркивается разработчиками ACT-R.
Фактически, большая часть реализации не отражает теорию. Например, в реальной реализации используются дополнительные «модули», которые существуют только для чисто вычислительных целей и не должны ничего отражать в мозге (например, один вычислительный модуль содержит генератор псевдослучайных чисел, используемый для создания зашумленных параметров, в то время как другой содержит процедуры именования для создания структур данных, доступных через имена переменных).
Кроме того, фактическая реализация предназначена для того, чтобы позволить исследователям модифицировать теорию, например, путем изменения стандартных параметров, создания новых модулей или частичного изменения поведения существующих.
Наконец, хотя лаборатория Андерсона в CMU поддерживает и выпускает официальный код ACT-R, стали доступны и другие альтернативные реализации теории. Эти альтернативные реализации включают jACT-R. [5] (написанный на Java Энтони М. Харрисоном из Военно-морской исследовательской лаборатории ) и Python ACT-R (написанный на Python Терренсом К. Стюартом и Робертом Л. Уэстом в Карлтонском университете , Канада). [6]
Точно так же ACT-RN (сейчас производство прекращено) представлял собой полноценную нейронную реализацию версии теории 1993 года. [7] Все эти версии были полностью функциональными, и со всеми ними были написаны и запущены модели.
Из-за этих степеней свободы реализации сообщество ACT-R обычно называет «официальную», основанную на Lisp версию теории, принятую в ее первоначальной форме и оставленную без изменений, «ванильным ACT-R».
Приложения [ править ]
За прошедшие годы модели ACT-R использовались более чем в 700 различных научных публикациях и цитировались во многих других. [8]
внимание и исполнительный контроль Память ,
Декларативная система памяти ACT-R использовалась для моделирования человеческой памяти с момента ее создания. За прошедшие годы он был принят для успешного моделирования большого количества известных эффектов. Они включают в себя веерный эффект помех для сопутствующей информации, [9] эффекты первичности и новизны для списочной памяти, [10] и серийный отзыв. [11]
ACT-R использовался для моделирования процессов внимания и контроля в ряде когнитивных парадигм. К ним относятся задача Струпа , [12] [13] переключение задач , [14] [15] психологический рефрактерный период , [16] и многозадачность. [17]
Естественный язык [ править ]
Ряд исследователей использовали ACT-R для моделирования некоторых аспектов понимания и производства естественного языка . Они включают модели синтаксического анализа, [18] понимание языка, [19] овладение языком [20] и понимание метафоры. [21]
Сложные задачи [ править ]
ACT-R использовался для того, чтобы запечатлеть, как люди решают сложные проблемы, такие как Ханойская башня, [22] или как люди решают алгебраические уравнения. [23] Его также использовали для моделирования поведения человека при вождении и полете. [24]
Благодаря интеграции перцептивно-моторных возможностей ACT-R становится все более популярным в качестве инструмента моделирования человеческого фактора и взаимодействия человека с компьютером. В этой области он был принят для моделирования поведения вождения в различных условиях. [25] [26] выбор меню и визуальный поиск в приложении компьютера, [27] [28] и веб-навигация. [29]
нейробиология Когнитивная
Совсем недавно ACT-R использовался для прогнозирования закономерностей активации мозга во время экспериментов по визуализации. [30] В этой области модели ACT-R успешно используются для прогнозирования префронтальной и теменной активности при восстановлении памяти. [31] активность передней поясной извилины для контрольных операций, [32] и связанные с практикой изменения в активности мозга. [33]
Образование [ править ]
ACT-R часто используется в качестве основы для когнитивных преподавателей . [34] [35] Эти системы используют внутреннюю модель ACT-R, чтобы имитировать поведение учащегося и персонализировать его/ее инструкции и учебную программу, пытаясь «угадать» трудности, с которыми могут столкнуться учащиеся, и оказать целенаправленную помощь.
Такие «когнитивные наставники» используются в качестве платформы для исследований в области обучения и когнитивного моделирования в рамках Питтсбургского центра науки и обучения. Некоторые из наиболее успешных приложений, такие как Cognitive Tutor for Mathematics, используются в тысячах школ по всей территории США.
Краткая история [ править ]
Ранние годы: гг . 1973–1990
ACT-R является окончательным преемником серии все более точных моделей человеческого познания, разработанных Джоном Р. Андерсоном .
Ее корни можно проследить до оригинальной модели памяти HAM (Человеческая ассоциативная память), описанной Джоном Р. Андерсоном и Гордоном Бауэром в 1973 году. [36] Модель HAM позже была расширена до первой версии теории ACT. [37] Это был первый случай, когда процедурная память была добавлена к исходной системе декларативной памяти, введя вычислительную дихотомию, которая, как позже было доказано, сохраняется и в человеческом мозге. [38] Затем эта теория была расширена до модели человеческого познания ACT*. [39]
Интеграция с рациональным анализом: 1990–1998 гг .
В конце восьмидесятых годов Андерсон посвятил себя исследованию и изложению математического подхода к познанию, который он назвал рациональным анализом . [40] Основное предположение рационального анализа заключается в том, что познание оптимально адаптивно, а точные оценки когнитивных функций отражают статистические свойства окружающей среды. [41] Позже он вернулся к разработке теории ACT, используя рациональный анализ в качестве объединяющей основы для лежащих в ее основе расчетов. Чтобы подчеркнуть важность нового подхода в формировании архитектуры, его название было изменено на ACT-R, где «R» означает «Rational». [42]
В 1993 году Андерсон встретился с Кристианом Лебьером, исследователем коннекционистских моделей , наиболее известным тем, что вместе со Скоттом Фалманом разработал алгоритм обучения каскадной корреляции . Их совместная работа завершилась выпуском ACT-R 4.0. [43] Благодаря Майку Бирну (сейчас работающему в Университете Райса ), версия 4.0 также включала дополнительные перцептивные и двигательные возможности, в основном вдохновленные архитектурой EPIC, что значительно расширило возможные применения теории.
структура: 1998–2015 Визуализация мозга и модульная гг .
После выпуска ACT-R 4.0 Джон Андерсон все больше и больше интересовался нейронной правдоподобностью своей теории жизни и начал использовать методы визуализации мозга, преследуя свою собственную цель — понять вычислительную основу человеческого разума.
Необходимость учета локализации мозга подтолкнула к серьезному пересмотру теории. В ACT-R 5.0 появилась концепция модулей — специализированных наборов процедурных и декларативных представлений, которые можно сопоставить с известными системами мозга. [44] Кроме того, взаимодействие процедурных и декларативных знаний опосредовалось вновь введенными буферами — специализированными структурами для хранения временно активной информации (см. раздел выше). Считалось, что буферы отражают активность коры, и последующая серия исследований позже подтвердила, что активация в областях коры может быть успешно связана с вычислительными операциями над буферами.
Новая версия кода, полностью переписанная, была представлена в 2005 году как ACT-R 6.0. Он также включал значительные улучшения в языке кодирования ACT-R. Это включало новый механизм в производственной спецификации ACT-R, называемый динамическим сопоставлением шаблонов. В отличие от предыдущих версий, которые требовали, чтобы шаблон, сопоставленный с продуктом, включал определенные слоты для информации в буферах, динамическое сопоставление шаблонов позволяет сопоставлять слоты, которые также определяются содержимым буфера. Описание и мотивация для ACT-R 6.0 даны Андерсоном (2007). [45]
ACT-R 7.0: 2015 – настоящее время [ править ]
На семинаре 2015 года утверждалось, что изменения программного обеспечения требуют увеличения нумерации моделей до ACT-R 7.0. Основным изменением программного обеспечения стало удаление требования о том, что фрагменты должны указываться на основе предопределенных типов фрагментов. Механизм типа фрагмента не был удален, но превратился из обязательной конструкции архитектуры в необязательный синтаксический механизм в программном обеспечении. Это позволило повысить гибкость представления знаний для задач моделирования, требующих изучения новой информации, и расширило функциональность, предоставляемую за счет динамического сопоставления с образцом, что теперь позволяет моделям создавать новые «типы» фрагментов. Это также привело к упрощению синтаксиса, необходимого для указания действий в производстве, поскольку все действия теперь имеют одинаковую синтаксическую форму. Программное обеспечение ACT-R также было впоследствии обновлено и теперь включает удаленный интерфейс на основе JSON RPC 1.0. Этот интерфейс был добавлен, чтобы упростить создание задач для моделей и работу с ACT-R из языков, отличных от Lisp, а руководство, включенное в программное обеспечение, было обновлено, чтобы обеспечить реализации Python для всех примеров задач, выполняемых учебными моделями. .
Семинар и летняя школа [ править ]
В 1995 году Университет Карнеги-Меллона начал проводить ежегодный семинар и летнюю школу ACT-R. [46] Их семинар ACT-R в настоящее время проводится на ежегодной конференции MathPsych/ICCM, а их летняя школа проводится на территории кампуса с возможностью виртуального посещения в Университете Карнеги-Меллона .
Спин-оффы [ править ]
Длительное развитие теории ACT-R породило определенное количество параллельных и связанных проектов.
Наиболее важными из них являются система производства PUPS , первоначальная реализация теории Андерсона, от которой позже отказались; и АКТ-РН , [7] реализация нейронной сети теории, разработанной Кристианом Лебьером.
Линн М. Редер , также работающая в Университете Карнеги-Меллона , в начале 1990-х годов разработала SAC , модель концептуальных и перцептивных аспектов памяти, которая имеет много общих черт с базовой декларативной системой ACT-R, хотя и отличается в некоторых предположениях.
Для своей диссертации в Карнеги-Меллон Университете Кристофер Л. Дэнси разработал и успешно защитил в 2014 году ACT-R/Phi , [47] реализация ACT-R с добавленными физиологическими модулями, которые позволяют ACT-R взаимодействовать с физиологическими процессами человека.
Облегченная реализация компонента рабочей памяти ACT-R на основе Python, pyACTUp . [48] был создан Доном Моррисоном из Университета Карнеги-Меллон , который поддерживает кодовую базу ACT-R. Эта библиотека реализует ACT-R как унимодальную модель обучения с учителем для задач классификации.
Примечания [ править ]
- ^ «АКТ-Р » Программное обеспечение» . ACT-R.psy.cmu.edu . Проверено 24 марта 2021 г.
- ^ Ньюэлл, Аллен (1994). Единые теории познания . Кембридж, Массачусетс: Издательство Гарвардского университета. ISBN 0-674-92101-1 .
- ^ Полк, штат Калифорния; К. М. Зейферт (2002). Когнитивное моделирование . Кембридж, Массачусетс: MIT Press. ISBN 0-262-66116-0 .
- ^ Пилишин, ZW (1984). Вычисления и познание: на пути к созданию основы когнитивной науки . Кембридж, Массачусетс: MIT Press. ISBN 0-262-66058-X .
- ^ Харрисон, А. (2002). jACT-R: Java ACT-R. Материалы 8-го ежегодного семинара ACT-R. PDF-файл. Архивировано 7 сентября 2008 г. в Wayback Machine.
- ^ Стюарт, Т.С. и Уэст, Р.Л. (2006) Деконструкция ACT-R. Материалы седьмой международной конференции по когнитивному моделированию PDF
- ^ Jump up to: Перейти обратно: а б Лебьер К. и Андерсон-младший (1993). Коннекционист. Внедрение производственной системы ACT-R. В материалах пятнадцатой ежегодной конференции Общества когнитивных наук (стр. 635–640). Махва, Нью-Джерси: Lawrence Erlbaum Associates
- ^ [1] Публикации ACT-R и опубликованные модели - CMU
- ^ Андерсон, младший и Редер, LM (1999). Эффект веера: новые результаты и новые теории. Журнал экспериментальной психологии: General , 128 , 186–197.
- ^ Андерсон, младший, Ботелл, Д., Лебьер, К. и Матесса, М. (1998). Интегрированная теория списочной памяти. Журнал памяти и языка , 38 , 341–380.
- ^ Андерсон, младший и Матесса, член парламента (1997). Теория производственной системы последовательной памяти. Психологическое обозрение, 104 , 728–748.
- ^ Ловетт, MC (2005) Стратегическая интерпретация Струпа. Когнитивная наука, 29 , 493–524.
- ^ Ювина И. и Таатген Н.А. (2009). Отчет о эффектах между испытаниями, связанных с подавлением повторения, в модифицированной парадигме Струпа. Acta Psychologica, 131 (1) , 72–84.
- ^ Альтманн, Э.М., и Грей, В.Д. (2008). Интегрированная модель когнитивного контроля при переключении задач. Психологический обзор, 115 , 602–639.
- ^ Зон, М.-Х., и Андерсон, младший (2001). Подготовка и повторение задач: двухкомпонентная модель переключения задач. Журнал экспериментальной психологии: Общие сведения .
- ^ Бирн, доктор медицинских наук, и Андерсон, младший (2001). Последовательные модули параллельно: период психологической рефрактерности и идеальное разделение времени. Психологический обзор, 108 , 847–869.
- ^ Сальвуччи, Д.Д., и Таатген, Н.А. (2008). Поточное познание: интегрированная теория одновременной многозадачности. Психологическое обозрение», 130(1)», 101–130.
- ^ Льюис, Р.Л. и Васишт, С. (2005). Модель обработки предложений, основанная на активации, как квалифицированное извлечение памяти. Когнитивная наука, 29 , 375–419.
- ^ Будиу, Р. и Андерсон, младший (2004). Обработка на основе интерпретации: унифицированная теория семантической обработки предложений. Когнитивная наука, 28 , 1–44.
- ^ Таатген, Н. А. и Андерсон, младший (2002). Почему дети учатся говорить «сломан»? Модель изучения прошедшего времени без обратной связи. Познание , 86(2) , 123–155.
- ^ Будиу Р. и Андерсон-младший (2002). Понимание анафорических метафор. Память и познание, 30 , 158–165.
- ^ Альтманн, Э.М. и Трафтон, Дж.Г. (2002). Память о целях: модель, основанная на активации. Когнитивная наука , 26 , 39–83.
- ^ Андерсон, младший (2005) Манипулирование человеческими символами в рамках интегрированной когнитивной архитектуры. Когнитивная наука, 29(3) , 313–341.
- ^ Бирн, доктор медицинских наук, и Кирлик, А. (2005). Использование компьютерного когнитивного моделирования для диагностики возможных источников авиационной ошибки. Международный журнал авиационной психологии, 15 , 135–155. дои : 10.1207/s15327108ijap1502_2
- ^ Сальвуччи, Д.Д. (2006). Моделирование поведения водителя в когнитивной архитектуре. Человеческий фактор , 48 , 362–380.
- ^ Сальвуччи, Д.Д., и Макуга, КЛ (2001). Прогнозирование влияния набора номера на сотовый телефон на производительность водителя. В материалах Четвертой Международной конференции по когнитивному моделированию , стр. 25–32. Махва, Нью-Джерси: Lawrence Erlbaum Associates.
- ^ Бирн, доктор медицины (2001). ACT-R/PM и выбор меню: применение когнитивной архитектуры к HCI. Международный журнал человеко-компьютерных исследований , 55 , 41–84.
- ^ Флитвуд, доктор медицинских наук и Бирн, доктор медицинских наук (2002) Поиск значков моделирования в ACT-R/PM. Исследования когнитивных систем , 3 , 25–33.
- ^ Фу, Вай-Тат; Пиролли, Питер (2007). «SNIF-ACT: Когнитивная модель навигации пользователя во Всемирной паутине» (PDF) . Взаимодействие человека и компьютера . 22 (4): 355–412. Архивировано из оригинала (PDF) 2 августа 2010 г.
- ^ Андерсон, младший, Финчем, Дж. М., Цинь, Ю., и Стокко, А. (2008). Центральный контур ума. Тенденции в когнитивных науках , 12(4) , 136–143.
- ^ Зон, М.-Х., Гуд, А., Стенгер, В.А., Картер, К.С., и Андерсон, младший (2003). Конкуренция и представление во время восстановления памяти: роли префронтальной коры и задней теменной коры, Труды Национальной академии наук, 100 , 7412–7417.
- ^ Сон, М.-Х., Альберт, М.В., Стенгер, В.А., Юнг, К.-Дж., Картер, К.С., и Андерсон, младший (2007). Ожидание мониторинга конфликта в передней поясной извилине и префронтальной коре. Труды Национальной академии наук, 104 , 10330–10334.
- ^ Цинь, Ю., Сон, М.Х., Андерсон, младший, Стенгер, В.А., Фиссел, К., Гуд, А. Картер, CS (2003). Прогнозирование практического воздействия на функцию фМРТ, зависящую от уровня оксигенации крови (ЖИРНЫЙ шрифт), в задаче символического манипулирования. Труды Национальной академии наук Соединенных Штатов Америки. 100 (8) : 4951–4956.
- ^ Льюис, М.В., Милсон, Р. и Андерсон, младший (1987). Ученик учителя: Разработка интеллектуальной авторской системы для математики средней школы. В Г.П. Кирсли (ред.), Искусственный интеллект и обучение . Ридинг, Массачусетс: Аддисон-Уэсли. ISBN 0-201-11654-5 .
- ^ Андерсон, младший и Глюк, К. (2001). Какую роль когнитивные архитектуры играют в интеллектуальных системах обучения? В Д. Кларе и С.М. Карвере (ред.) Познание и обучение: двадцать пять лет прогресса , 227–262. Лоуренс Эрлбаум Ассошиэйтс. ISBN 0-8058-3824-4 .
- ^ Андерсон, младший, и Бауэр, GH (1973). Ассоциативная память человека . Вашингтон, округ Колумбия: Уинстон и сыновья.
- ^ Андерсон, младший (1976) Язык, память и мышление . Махва, Нью-Джерси: Lawrence Erlbaum Associates. ISBN 0-89859-107-4 .
- ^ Коэн, Нью-Джерси, и Сквайр, Л.Р. (1980). Сохранение обучения и сохранение навыков анализа закономерностей при амнезии: диссоциация знания «как» и знания «что». Наука , 210(4466) , 207–210
- ^ Андерсон, младший (1983). Архитектура познания . Кембридж, Массачусетс: Издательство Гарвардского университета. ISBN 0-8058-2233-X .
- ^ Андерсон, JR (1990) Адаптивный характер мышления . Махва, Нью-Джерси: Lawrence Erlbaum Associates. ISBN 0-8058-0419-6 .
- ^ Андерсон, младший, и Скулер, LJ (1991). Отражения окружающего в памяти. Психологическая наука , 2 , 396–408.
- ^ Андерсон, младший (1993). Правила разума . Хиллсдейл, Нью-Джерси: Lawrence Erlbaum Associates. ISBN 0-8058-1199-0 .
- ^ Андерсон, младший, и Лебьер, К. (1998). Атомарные компоненты мысли . Хиллсдейл, Нью-Джерси: Lawrence Erlbaum Associates. ISBN 0-8058-2817-6 .
- ^ Андерсон, младший и др. (2004) Интегрированная теория разума. Психологический обзор , 111(4) . 1036–1060 гг.
- ^ Андерсон, младший (2007). Как человеческий разум может существовать в физической вселенной? Нью-Йорк, штат Нью-Йорк: Издательство Оксфордского университета. ISBN 0-19-532425-0 .
- ^ «АКТ-Р » Мастер-классы» .
- ^ Дэнси, CL, Риттер, FE, и Берри, К. (2012). На пути к добавлению физиологического субстрата к ACT-R. На 21-й ежегодной конференции по представлению поведения в моделировании и симуляции, 2012 г., BRiMS 2012 (стр. 75–82). (21-я ежегодная конференция по представлению поведения в моделировании и симуляции, 2012 г., BRiMS, 2012 г.).
- ^ Моррисон, Дон. "пьяктуп" . github.com . Проверено 15 сентября 2023 г.
Ссылки [ править ]
- Андерсон, младший (2007). Как человеческий разум может существовать в физической вселенной? Нью-Йорк, штат Нью-Йорк: Издательство Оксфордского университета. ISBN 0-19-532425-0 .
- Андерсон Дж.Р., Ботелл Д., Бирн М.Д., Дуглас С., Лебьер К. и Цинь Ю. (2004). Комплексная теория разума. Психологическое обозрение , 1036–1060.
Внешние ссылки [ править ]
- Официальный веб-сайт ACT-R – с большим количеством онлайн-материалов, включая исходный код, список публикаций и учебные пособия.
- jACT-R — переписывание ACT-R на Java
- ACT-R: среда моделирования и разработки Java — еще одна повторная реализация ACT-R с открытым исходным кодом на языке Java.
- Python ACT-R — реализация ACT-R на Python.
- pyactr — еще одна реализация ACT-R на Python.
- gactar — инструмент с открытым исходным кодом для изучения реализаций ACT-R.