Рефлектор Кассегрена
Рефлектор Кассегрена представляет собой комбинацию главного вогнутого зеркала и вторичного выпуклого зеркала , часто используемого в оптических телескопах и радиоантеннах , основной характеристикой которого является то, что оптический путь складывается обратно сам по себе относительно входной апертуры главного зеркала оптической системы. Эта конструкция размещает фокус в удобном месте за главным зеркалом , а выпуклое вторичное добавляет эффект телефото, создавая гораздо большее фокусное расстояние в механически короткой системе. [1]
В симметричном Кассегрене оба зеркала выровнены вокруг оптической оси , а главное зеркало обычно содержит отверстие в центре, что позволяет свету достигать окуляра , камеры или датчика изображения . Альтернативно, как и во многих радиотелескопах, конечный фокус может находиться перед основным. В асимметричном Кассегрене зеркало (зеркала) может быть наклонено, чтобы избежать затемнения главного зеркала или чтобы избежать необходимости в отверстии в главном зеркале (или и том, и другое).
Классическая конфигурация Кассегрена использует параболический отражатель в качестве основного, а вторичное зеркало является гиперболическим . [2] Современные варианты могут иметь гиперболическую первичную обмотку для повышения производительности (например, конструкция Ричи-Кретьена ); и одно или оба зеркала могут быть сферическими или эллиптическими для простоты изготовления.
Рефлектор Кассегрена назван в честь опубликованной конструкции телескопа-рефлектора , появившейся в журнале Journal des sçavans от 25 апреля 1672 года и приписываемой Лорану Кассегрену . [3] Подобные конструкции с использованием выпуклых вторичных зеркал были найдены в трудах Бонавентуры Кавальери 1632 года, описывающих горящие зеркала. [4] [5] и сочинения Марина Мерсенна 1636 года, описывающие конструкции телескопов. [6] Попытки Джеймса Грегори в 1662 году создать телескоп-рефлектор включали в себя конфигурацию Кассегрена, судя по выпуклому вторичному зеркалу, найденному в ходе его экспериментов. [7]
Конструкция Кассегрена также используется в катадиоптрических системах .
Кассегрена конструкции
[ редактировать ]«Классические» телескопы Кассегрена.
[ редактировать ]«Классический» Кассегрен имеет параболическое главное зеркало и гиперболическое вторичное зеркало, которое отражает свет обратно вниз через отверстие в главном. Складывание оптики делает конструкцию компактной. В телескопах меньшего размера и объективах камер вторичная обмотка часто устанавливается на оптически плоской и оптически прозрачной стеклянной пластине, закрывающей трубу телескопа. Эта опора устраняет «звездообразные» эффекты дифракции, вызванные опорной крестовиной с прямыми лопатками. Закрытая трубка остается чистой, а первичная обмотка защищена за счет некоторой потери светосилы.
Он использует особые свойства параболических и гиперболических отражателей. Вогнутый параболический отражатель будет отражать все падающие лучи света параллельно своей оси симметрии в одну точку — фокус. Выпуклый гиперболический рефлектор имеет два фокуса и отражает все лучи света, направленные в один из двух его фокусов, в сторону другого фокуса. Зеркала в телескопах этого типа сконструированы и расположены так, что они имеют один фокус, а второй фокус гиперболического зеркала находится в той же точке, в которой следует наблюдать изображение, обычно сразу за окуляром.
В большинстве систем Кассегрена вторичное зеркало закрывает центральную часть апертуры. Эта входная апертура в форме кольца значительно уменьшает часть передаточной функции модуляции (MTF) в диапазоне низких пространственных частот по сравнению с конструкцией с полной апертурой, такой как рефрактор или смещенный Кассегрен. [8] Этот вырез MTF снижает контрастность изображения при визуализации широких объектов. Кроме того, поддержка вторичного изображения (паука) может привести к появлению дифракционных всплесков на изображениях.
Радиусы кривизны главного и вторичного зеркал соответственно в классической конфигурации равны
и
где
- - эффективное фокусное расстояние системы,
- — заднее фокусное расстояние (расстояние от второстепенного элемента до фокуса),
- расстояние между двумя зеркалами и
- это вторичное увеличение.
Если вместо и , известные величины — фокусное расстояние главного зеркала, , и расстояние до фокуса за главным зеркалом, , затем и .
Коническая постоянная главного зеркала равна константе параболы. . Благодаря этому отсутствует сферическая аберрация, вносимая главным зеркалом. Однако вторичное зеркало имеет гиперболическую форму: один фокус совпадает с фокусом главного зеркала, а другой фокус находится на заднем фокусном расстоянии. . Таким образом, классический Кассегрен имеет идеальную фокусировку главного луча (диаграмма центрального пятна — одна точка). У нас есть,
- ,
где
- .
Фактически, поскольку конические константы не должны зависеть от масштабирования, формулы для обоих и можно значительно упростить и представить только как функции вторичного увеличения. Окончательно,
и
- .
Ричи-Кретьен
[ редактировать ]Ричи-Кретьена — это специализированный рефлектор Кассегрена, который имеет два гиперболических зеркала (вместо параболического главного зеркала). Он лишен комы и сферических аберраций в плоской фокальной плоскости, что делает его хорошо подходящим для широкоугольных и фотографических наблюдений. Его изобрели Джордж Уиллис Ричи и Анри Кретьен в начале 1910-х годов. Такая конструкция очень распространена в больших профессиональных исследовательских телескопах, включая космический телескоп Хаббл , телескопы Кека и очень большой телескоп (VLT); его также можно обнаружить в полноценных любительских телескопах.
Далл-Киркхем
[ редактировать ]Конструкция телескопа Далла-Киркхема Кассегрена была создана Горацием Даллом в 1928 году и получила название в статье, опубликованной в журнале Scientific American в 1930 году после дискуссии между астрономом-любителем Алланом Киркхэмом и Альбертом Г. Ингаллсом, тогдашним редактором астрономического журнала. В нем используется вогнутое эллиптическое главное зеркало и выпуклое сферическое вторичное зеркало. Хотя эту систему легче полировать, чем классическую систему Кассегрена или Ричи-Кретьена, внеосевая кома значительно хуже, поэтому изображение быстро ухудшается вне оси. Поскольку это менее заметно при больших фокусных расстояниях , объективы Далла-Киркхама редко бывают светосильнее f/15.
Внеосевые конфигурации
[ редактировать ]Необычным вариантом Кассегрена является телескоп Шифшпиглера («перекошенный» или «наклонный рефлектор»; также известный как «телескоп Куттера» в честь его изобретателя Антона Куттера ). [9] ), в котором используются наклонные зеркала, чтобы вторичное зеркало не отбрасывало тень на основное. Однако устранение дифракционных картин приводит к ряду других аберраций, которые необходимо исправлять.
Для радиоантенн используется несколько различных внеосевых конфигураций. [10]
Еще одна внеосевая, беспрепятственная конструкция и вариант Кассегрена — это рефлектор « Йоло », изобретенный Артуром Леонардом. В этой конструкции используется сферическая или параболическая первичная обмотка и механически деформированная сферическая вторичная обмотка для коррекции внеосевого астигматизма. При правильной настройке Yolo может обеспечить бескомпромиссный и беспрепятственный обзор планетарных объектов и целей с небольшим полем обзора без потери контраста или качества изображения, вызванного сферической аберрацией. Отсутствие препятствий также устраняет дифракцию, связанную с астрофотографией с рефлектором Кассегрена и Ньютона.
Катадиоптрические Кассегрены
[ редактировать ]В катадиоптрических устройствах Кассегрена используются два зеркала, часто со сферическим главным зеркалом для снижения стоимости, в сочетании с элементом(ами) корректора преломления для коррекции возникающих аберраций.
Шмидт-Кассегрен
[ редактировать ]Камера Шмидта-Кассегрена была разработана на основе широкоугольной камеры Шмидта , хотя конфигурация Кассегрена дает ей гораздо более узкое поле зрения. Первый оптический элемент — пластинка-корректор Шмидта . Пластина формируется путем размещения вакуума на одной стороне и шлифования точной поправки, необходимой для исправления сферической аберрации, вызванной сферическим главным зеркалом. Шмидт-Кассегрен пользуется популярностью среди астрономов-любителей. Ранняя камера Шмидта-Кассегрена была запатентована в 1946 году художником/архитектором/физиком Роджером Хейвордом . [11] с держателем пленки, расположенным снаружи телескопа.
Максутов-Кассегрен
[ редактировать ]Максутов-Кассегрен — разновидность телескопа Максутова, названного в честь советского / украинского оптика и астронома Дмитрия Дмитриевича Максутова . Все начинается с оптически прозрачной корректирующей линзы, представляющей собой часть полой сферы. Он имеет сферическое главное зеркало и сферическое вторичное зеркало, которое обычно представляет собой зеркальную часть линзы корректора.
Аргунов-Кассегрен
[ редактировать ]В телескопе Аргунова-Кассегрена вся оптика сферическая, а классическое вторичное зеркало Кассегрена заменено субапертурным корректором, состоящим из трех разнесенных по воздуху линзовых элементов. Элемент, наиболее удаленный от главного зеркала, — это зеркало Манжена , которое действует как вторичное зеркало.
Клевцов-Кассегрен
[ редактировать ]В «Клевцове-Кассегрене», как и в «Аргунове-Кассегрене», в качестве «вторичного зеркала» используется субапертурный корректор, состоящий из небольшой менисковой линзы и зеркала Манжена. [12]
Радиоантенны Кассегрена
[ редактировать ]Конструкции Кассегрена также используются в земных станций антеннах спутниковой связи и радиотелескопах размером от 2,4 до 70 метров. Расположенный в центре субрефлектор служит для фокусировки радиочастотных сигналов аналогично оптическим телескопам.
Примером радиоантенны Кассегрена является 70-метровая антенна реактивного движения Лаборатории антенного комплекса Голдстоун . У этой антенны окончательный фокус находится перед основной, на вершине пьедестала, выступающего из зеркала.
См. также
[ редактировать ]- Катадиоптрическая система
- Целестрон (Шмидт-Кассегрен, Максутов Кассегрэн)
- Список типов телескопов
- Meade Instruments (Шмидт-Кассегрен, Максутов Кассегрэн)
- Квестар (Максутов Кассегрэн)
- Рефракторный телескоп
- Виксен (Кассегрен, Клевцов–Кассегрен)
Ссылки
[ редактировать ]- ^ Уилсон, Раймонд Н. (2013). Оптика отражающего телескопа I: Базовая теория конструкции и ее историческое развитие . Springer Science & Business Media. стр. 43–44. ISBN 978-3-662-30863-9 .
- ^ «Словарь по астрономии и геологии. Науки о Земле и космосе доступны каждому. Кассегрен» . АстроМия.
- ^ Баранн, Эндрю; Лоне, Франсуаза (1997). «Кассегрен: un célèbre inconnu de l'astronomie Instrumental» [Кассегрен: знаменитый неизвестный инструментальной астрономии]. Журнал оптики (на французском языке). 28 (4): 158–172. дои : 10.1088/0150-536X/28/4/004 .
- ^ Горящее зеркало, или Трактат о конических сечениях.
- ^ Звездочет, Жизнь и времена телескопа , Фред Уотсон, стр. 134
- ^ Звездочёт , с. 115 .
- ^ Звездочет , стр. 123 и 132.
- ^ «ЭФФЕКТЫ ЗАКРЫТИЯ ДИАПОРТА» .
- ^ .telescopemaking.org - Куттер Шифшпиглер. Архивировано 19 февраля 2009 г., в Wayback Machine.
- ^ Миллиган, Т.А. (2005). Современная конструкция антенны (PDF) (2-е изд.). Хобокен, Нью-Джерси: Wiley-IEEE Press. стр. 424–429. ISBN 0-471-45776-0 .
- ^ Патент США 2 403 660, камера Шмидта-Кассегрена.
- ^ Новые оптические системы для малогабаритных телескопов.
Внешние ссылки
[ редактировать ]- СМИ, связанные с телескопами Кассегрена, на Викискладе?
- Моделирование антенн с отражателем Кассегрена в MATLAB на Wayback Machine (архивировано 3 марта 2024 г.)