H3K79me2
H3K79me2 представляет собой эпигенетическую модификацию белка, упаковывающего ДНК, гистона H3 . Это метка, указывающая на диметилирование 79 -го остатка лизина белка гистона H3. H3K79me2 обнаруживается в транскрибируемых областях активных генов.
Номенклатура
[ редактировать ]H3K79me2 указывает на диметилирование лизина : 79 на субъединице белка гистона H3 [ 1 ]
Сокр. | Значение |
Н3 | Семейство гистонов H3 |
К | стандартное сокращение для лизина |
79 | положение аминокислотного остатка
(считая от N-конца) |
мне | метильная группа |
2 | количество добавленных метильных групп |
Метилирование лизина
[ редактировать ]На этой диаграмме показано прогрессивное метилирование остатка лизина. Диметилирование (третье слева) обозначает метилирование, присутствующее в H3K79me2. [ 2 ]
Модификации гистонов
[ редактировать ]Геномная ДНК эукариотических клеток обернута вокруг специальных белковых молекул, известных как гистоны . Комплексы, образующиеся в результате закольцовывания ДНК, известны как хроматин . Основной структурной единицей хроматина является нуклеосома : она состоит из основного октамера гистонов (H2A, H2B, H3 и H4), а также линкерного гистона и около 180 пар оснований ДНК. Эти коровые гистоны богаты остатками лизина и аргинина. Карбоксильный (С)-конец этих гистонов способствует взаимодействиям гистонов-гистонов, а также взаимодействиям гистонов с ДНК. Заряженные амино-(N)-концевые хвосты являются местом посттрансляционных модификаций, таких как та, которая наблюдается в H3K36me3 . [ 3 ] [ 4 ]
Эпигенетические последствия
[ редактировать ]Посттрансляционная модификация хвостов гистонов либо с помощью комплексов, модифицирующих гистоны, либо комплексов, ремоделирующих хроматин, интерпретируется клеткой и приводит к сложному комбинаторному транскрипционному результату. Считается, что код гистонов определяет экспрессию генов посредством сложного взаимодействия между гистонами в определенной области. [ 5 ] Нынешнее понимание и интерпретация гистонов основаны на двух крупномасштабных проектах: ENCODE и Epigenomic Roadmap. [ 6 ] Целью эпигеномного исследования было изучение эпигенетических изменений по всему геному. Это привело к состояниям хроматина, которые определяют геномные области путем группировки взаимодействий различных белков и/или модификаций гистонов вместе. Состояние хроматина исследовали в клетках дрозофилы путем изучения места связывания белков в геноме. Использование ChIP-секвенирования позволило выявить участки генома, характеризующиеся различной полосообразностью. [ 7 ] У дрозофилы также были профилированы различные стадии развития, акцент был сделан на актуальности модификаций гистонов. [ 8 ] Анализ полученных данных привел к определению состояний хроматина на основе модификаций гистонов. [ 9 ]
Геном человека был аннотирован состояниями хроматина. Эти аннотированные состояния можно использовать как новые способы аннотирования генома независимо от базовой последовательности генома. Эта независимость от последовательности ДНК подтверждает эпигенетическую природу модификаций гистонов. Состояния хроматина также полезны для идентификации регуляторных элементов, не имеющих определенной последовательности, таких как энхансеры. Этот дополнительный уровень аннотаций позволяет глубже понять регуляцию генов, специфичных для клеток. [ 10 ]
Три формы метилирования H3K79 (H3K79me1; H3K79me2; H3K79me3) катализируются DOT1 у дрожжей или DOT1L у млекопитающих. Метилирование H3K79 участвует в реакции на повреждение ДНК и играет множество ролей в эксцизионной репарации нуклеотидов и рекомбинационной репарации сестринских хроматид. [ 11 ]
Диметилирование H3K79 обнаружено в транскрибируемых областях активных генов. [ 2 ]
Методы
[ редактировать ]Гистоновую метку H3K36me3 можно обнаружить разными способами:
1. Секвенирование иммунопреципитации хроматина ( ChIP-секвенирование ) измеряет количество обогащенной ДНК после связывания с целевым белком и иммунопреципитации. Это приводит к хорошей оптимизации и используется in vivo для выявления связывания ДНК с белками, происходящего в клетках. ChIP-Seq можно использовать для идентификации и количественной оценки различных фрагментов ДНК для различных модификаций гистонов в геномной области. [ 12 ]
2. Секвенирование микрококковой нуклеазы ( MNase-seq ) используется для исследования областей, которые связаны хорошо расположенными нуклеосомами. Для определения положения нуклеосом используют фермент микрококковой нуклеазы. Видно, что хорошо расположенные нуклеосомы имеют обогащение последовательностей. [ 13 ]
3. Анализ секвенирования доступного транспозазы хроматина ( ATAC-seq ) используется для поиска областей, свободных от нуклеосом (открытый хроматин). Он использует гиперактивный транспозон Tn5 для выделения локализации нуклеосом. [ 14 ] [ 15 ] [ 16 ]
См. также
[ редактировать ]Ссылки
[ редактировать ]- ^ Хуан, Суминг; Литт, Майкл Д.; Энн Блейки, Дж. (30 ноября 2015 г.). Эпигенетическая экспрессия и регуляция генов . стр. 21–38. ISBN 9780127999586 .
- ^ Перейти обратно: а б Фарук, Зинат; Бандей, Шахид; Пандита, Тедж К.; Альтаф, Мохаммед (2016). «Многоликость метилирования гистона H3K79» . Исследования мутаций/обзоры исследований мутаций . 768 : 46–52. дои : 10.1016/j.mrrev.2016.03.005 . ПМЦ 4889126 . ПМИД 27234562 .
- ^ Рутенбург А.Дж., Ли Х., Патель DJ, Allis CD (декабрь 2007 г.). «Многовалентное взаимодействие модификаций хроматина с помощью связанных связывающих модулей» . Обзоры природы. Молекулярно-клеточная биология . 8 (12): 983–94. дои : 10.1038/nrm2298 . ПМЦ 4690530 . ПМИД 18037899 .
- ^ Кузаридес Т (февраль 2007 г.). «Модификации хроматина и их функции» . Клетка . 128 (4): 693–705. дои : 10.1016/j.cell.2007.02.005 . ПМИД 17320507 .
- ^ Дженувейн Т., Эллис, компакт-диск (август 2001 г.). «Перевод гистонового кода». Наука . 293 (5532): 1074–80. CiteSeerX 10.1.1.453.900 . дои : 10.1126/science.1063127 . ПМИД 11498575 .
- ^ Бирни Э. , Стаматояннопулос Х.А. , Дутта А. , Гиго Р., Гингерас Т.Р., Маргулис Э.Х. и др. (Консорциум проекта ENCODE) (июнь 2007 г.). «Идентификация и анализ функциональных элементов в 1% генома человека в рамках пилотного проекта ENCODE» . Природа . 447 (7146): 799–816. Бибкод : 2007Natur.447..799B . дои : 10.1038/nature05874 . ПМК 2212820 . ПМИД 17571346 .
- ^ Филион Г.Дж., ван Беммель Дж.Г., Брауншвейг Ю., Талхаут В., Кинд Дж., Уорд Л.Д., Бругман В., де Кастро И.Дж., Керховен Р.М., Буссемакер Х.Дж., ван Стинсел Б. (октябрь 2010 г.). «Систематическое картирование расположения белков выявило пять основных типов хроматина в клетках дрозофилы» . Клетка . 143 (2): 212–24. дои : 10.1016/j.cell.2010.09.009 . ПМЦ 3119929 . ПМИД 20888037 .
- ^ Рой С., Эрнст Дж., Харченко П.В., Херадпур П., Негре Н., Итон М.Л. и др. (Консорциум modENCODE) (декабрь 2010 г.). «Идентификация функциональных элементов и регуляторных цепей с помощью modENCODE дрозофилы» . Наука . 330 (6012): 1787–97. Бибкод : 2010Sci...330.1787R . дои : 10.1126/science.1198374 . ПМК 3192495 . ПМИД 21177974 .
- ^ Харченко П.В., Алексеенко А.А., Шварц Ю.Б., Минода А., Риддл Н.С., Эрнст Дж. и др. (март 2011 г.). «Комплексный анализ хроматинового ландшафта Drosophila melanogaster» . Природа . 471 (7339): 480–5. Бибкод : 2011Natur.471..480K . дои : 10.1038/nature09725 . ПМК 3109908 . ПМИД 21179089 .
- ^ Кундадже А., Меулеман В., Эрнст Дж., Биленки М., Йен А., Херави-Мусави А., Херадпур П., Чжан З. и др. (Консорциум по эпигеномике «Дорожная карта») (февраль 2015 г.). «Интегративный анализ 111 эталонных эпигеномов человека» . Природа . 518 (7539): 317–30. Бибкод : 2015Natur.518..317. . дои : 10.1038/nature14248 . ПМК 4530010 . ПМИД 25693563 .
- ^ Чэнь Ю, Чжу В.Г. (июль 2016 г.). «Биологическая функция и регуляция метилирования гистонов и негистоновых лизинов в ответ на повреждение ДНК» . Акта Биохим. Биофиз. Грех. (Шанхай) . 48 (7): 603–16. дои : 10.1093/abbs/gmw050 . ПМИД 27217472 .
- ^ «Полногеномное IP-секвенирование хроматина (ChIP-Seq)» (PDF) . Иллюмина . Проверено 23 октября 2019 г.
- ^ «МЭН-Seq/Mnase-Seq» . иллюмина . Проверено 23 октября 2019 г.
- ^ Буэнростро, Джейсон Д.; Ву, Пекин; Чанг, Ховард Ю.; Гринлиф, Уильям Дж. (2015). «ATAC-seq: метод анализа доступности хроматина по всему геному» . Современные протоколы молекулярной биологии . 109 : 21.29.1–21.29.9. дои : 10.1002/0471142727.mb2129s109 . ISBN 9780471142720 . ПМЦ 4374986 . ПМИД 25559105 .
- ^ Шеп, Алисия Н.; Буэнростро, Джейсон Д.; Денни, Сара К.; Шварц, Катя; Шерлок, Гэвин; Гринлиф, Уильям Дж. (2015). «Структурированные нуклеосомные отпечатки пальцев позволяют картировать архитектуру хроматина в регуляторных регионах с высоким разрешением» . Геномные исследования . 25 (11): 1757–1770. дои : 10.1101/гр.192294.115 . ISSN 1088-9051 . ПМК 4617971 . ПМИД 26314830 .
- ^ Песня, Л.; Кроуфорд, GE (2010). «DNase-seq: метод высокого разрешения для картирования активных генных регуляторных элементов по всему геному клеток млекопитающих» . Протоколы Колд-Спринг-Харбора . 2010 (2): pdb.prot5384. дои : 10.1101/pdb.prot5384 . ISSN 1559-6095 . ПМЦ 3627383 . ПМИД 20150147 .