Jump to content

икосийский

(Перенаправлено с икосианцев )

В математике икосианы представляют собой особый набор гамильтоновых кватернионов с той же симметрией, что и 600-ячеечный . Этот термин можно использовать для обозначения двух связанных, но различных понятий:

Единичные икосианы

[ редактировать ]

Все 120 единичных икосианов, образующих икосианскую группу, представляют собой четные перестановки :

  • 8 икосианов вида ½(±2, 0, 0, 0)
  • 16 икосианов формы ½(±1, ±1, ±1, ±1)
  • 96 икосианов формы ½(0, ±1, ±1 , ± φ )

В этом случае вектор ( a , b , c , d ) относится к кватерниону a + b i + c j + d k , а φ представляет собой золотое сечение ( 5 + 1)/2. Эти 120 векторов образуют корневую систему H4 с группой Вейля порядка 14400. В дополнение к 120 единичным икосианам, образующим вершины 600-ячейки, 600 икосианов нормы 2 образуют вершины 120-ячейки . Другие подгруппы икосианцев соответствуют тессеракту , 16-клеточному и 24-клеточному .

Икосианское кольцо

[ редактировать ]

Икосианы лежат в золотом поле , ( a + b 5 ) + ( c + d 5 ) i + ( e + f 5 ) j + ( g + h 5 ) k , где восемь переменных являются рациональными числами. . Этот кватернион является икосианом только в том случае, если вектор ( a , b , c , d , e , f , g , h ) является точкой на решетке L , которая изоморфна решетке E8 .

Точнее, норма кватернионов вышеуказанного элемента равна ( a + b 5 ) 2 + ( c + d 5 ) 2 + ( е + ж 5 ) 2 + ( г + час 5 ) 2 . Его евклидова норма определяется как u + v , если норма кватерниона равна u + v 5 . Эта евклидова норма определяет квадратичную форму на L , при которой решетка изоморфна решетке E8 .

Эта конструкция показывает, что группа Кокстера встраивается как подгруппа . Действительно, линейный изоморфизм, сохраняющий норму кватернионов, сохраняет и евклидову норму.

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: c82be6c41f5948f219763f90fa0203a5__1673970900
URL1:https://arc.ask3.ru/arc/aa/c8/a5/c82be6c41f5948f219763f90fa0203a5.html
Заголовок, (Title) документа по адресу, URL1:
Icosian - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)