Свойство с наименьшей верхней границей

Из Википедии, бесплатной энциклопедии
(Перенаправлено из Дедекиндовой полноты )
Каждое непустое подмножество реальных чисел ограниченное сверху, имеет наименьшую верхнюю границу.

В математике свойство наименьшей верхней границы (иногда называемое полнотой , свойством супремума или свойством lub ). [1] является фундаментальным свойством действительных чисел . В более общем смысле, частично упорядоченное множество X если каждое непустое подмножество X обладает свойством наименьшей верхней границы , с верхней границей имеет наименьшую верхнюю границу (супремум) в X . Не каждое (частично) упорядоченное множество обладает свойством наименьшей верхней границы. Например, набор всех рациональных чисел с их естественным порядком не обладает свойством наименьшей верхней границы.

Свойство наименьшей верхней границы — это одна из форм аксиомы полноты действительных чисел, которую иногда называют полнотой Дедекинда . [2] Его можно использовать для доказательства многих фундаментальных результатов реального анализа , таких как теорема о промежуточном значении , теорема Больцано-Вейерштрасса , теорема об экстремальных значениях и теорема Гейне-Бореля . Это обычно принимается как аксиома в синтетических конструкциях действительных чисел , а также тесно связано с построением действительных чисел с использованием дедекиндовых разрезов .

В теории порядка это свойство можно обобщить до понятия полноты любого частично упорядоченного множества . , Линейно упорядоченное множество плотное и обладающее свойством наименьшей верхней границы, называется линейным континуумом .

Заявление об имуществе [ править ]

Заявление для действительных чисел [ править ]

Пусть S — непустое множество действительных чисел .

  • Действительное число x называется верхней границей S , если x s для s S. всех
  • Действительное число x — это наименьшая верхняя граница (или верхняя граница ) для S если x — верхняя граница для S и x y для каждой верхней границы y для S. ,

Свойство наименьшей верхней границы утверждает, что любой непустой набор действительных чисел, имеющий верхнюю границу, должен иметь наименьшую верхнюю границу действительных чисел .

Обобщение на упорядоченные множества [ править ]

Красный: набор . Синий: набор его верхних границ в .

В более общем смысле, можно определить верхнюю и наименьшую верхнюю границы для любого подмножества X частично упорядоченного множества , заменяя «действительное число» на «элемент X ». В этом случае мы говорим, что X обладает свойством наименьшей верхней границы, если каждое непустое подмножество X с верхней границей имеет наименьшую верхнюю границу в X .

Например, множество Q рациональных чисел не обладает свойством наименьшей верхней границы при обычном порядке. Например, набор

имеет верхнюю границу в Q , но не имеет наименьшей верхней границы в Q (поскольку квадратный корень из двух иррационален ). Построение действительных чисел с использованием сокращений Дедекинда использует эту неудачу, определяя иррациональные числа как наименьшие верхние границы определенных подмножеств рациональных чисел.

Доказательство [ править ]

Логический статус [ править ]

Свойство наименьшей верхней границы эквивалентно другим формам аксиомы полноты , таким как сходимость последовательностей Коши или теорема о вложенных интервалах . Логический статус свойства зависит от конструкции используемых действительных чисел : в синтетическом подходе свойство обычно принимается в качестве аксиомы для действительных чисел (см. аксиому наименьшей верхней границы ); при конструктивном подходе свойство должно быть доказано как теорема либо непосредственно из конструкции, либо как следствие какой-либо другой формы полноты.

Доказательство с использованием последовательностей Коши [ править ]

Свойство наименьшей верхней границы можно доказать, используя предположение, что каждая последовательность Коши действительных чисел сходится. Пусть S непустое множество действительных чисел. Если S имеет ровно один элемент, то его единственным элементом является минимальная верхняя граница. Итак, рассмотрим S с более чем одним элементом и предположим, что S имеет верхнюю границу B 1 . Поскольку S непусто и имеет более одного элемента, существует действительное число A 1 , которое не является верхней границей для S . Определите последовательности A 1 , A 2 , A 3 , ... и B 1 , B 2 , B 3 , ... рекурсивно следующим образом:

  1. Проверьте, является ли An + ( B n ) ⁄ 2 верхней границей для S .
  2. Если да, то пусть A n +1 = A n и пусть B n +1 = ( A n + B n ) ⁄ 2 .
  3. должен существовать элемент s В противном случае в S , такой что s >( A n + B n ) ⁄ 2 . Пусть A n +1 = s и пусть B n +1 = B n .

Тогда A 1 A 2 A 3 ≤ ⋯ ≤ B 3 B 2 B 1 и | А п - Б п | → 0 при n → ∞ . Отсюда следует, что обе последовательности являются Коши и имеют один и тот же предел , который должен быть наименьшей верхней границей для S. L

Приложения [ править ]

наименьшей верхней границы Свойство R можно использовать для доказательства многих основных фундаментальных теорем реального анализа .

Теорема о промежуточном значении

Пусть f : [ a , b ] → R непрерывная функция , и предположим, что f ( a ) < 0 и f ( b ) > 0 . В этом случае теорема о промежуточном значении утверждает, что f должен иметь корень в интервале [ a , b ] . Эту теорему можно доказать, рассмотрев множество

S знак равно { s ∈ [ а , б ] : ж ( Икс ) < 0 для всех Икс s } .

То есть S — это начальный сегмент [ a , b ] , который принимает отрицательные значения при f . Тогда b — верхняя граница для S , а наименьшая верхняя граница должна быть корнем f .

Вейерштрасса Теорема Больцано

Теорема Больцано-Вейерштрасса для R утверждает, что каждая последовательность x n действительных чисел в замкнутом интервале [ a , b ] должна иметь сходящуюся подпоследовательность . Эту теорему можно доказать, рассмотрев множество

S = { s ∈ [ a , b ] : s x n для бесконечного числа n }

Четко, , и S не пусто. Кроме того, b является верхней границей для S , поэтому S имеет наименьшую верхнюю границу c . Тогда c должна быть предельной точкой последовательности xn , и отсюда следует, что имеет xn подпоследовательность, сходящуюся к c .

экстремальных об значениях Теорема

Пусть f : [ a , b ] → R непрерывная функция и пусть M = sup f ([ a , b ]) , где M = ∞ , если f ([ a , b ]) не имеет верхней границы. Теорема об экстремальных значениях утверждает, что M конечно и f ( c ) = M для некоторого c ∈ [ a , b ] . В этом можно убедиться, рассмотрев множество

S знак равно { s ∈ [ а , б ] : суп ж ([ s , б ]) знак равно M } .

По определению M , a S , и по своему собственному определению, S ограничено b . Если c — наименьшая верхняя граница S , то из непрерывности следует, что ( c ) = M. f

Гейне Теорема Бореля -

Пусть [ a , b ] — замкнутый интервал в R , и пусть { U α } — совокупность открытых множеств покрывающая , [ a , b ] . Тогда теорема Гейне-Бореля утверждает, что некоторое конечное подмножество { U α } покрывает [ a , b ] также . Это утверждение можно доказать, рассмотрев множество

S = { s ∈ [ a , b ] : [ a , s ] может быть покрыто конечным числом U α } .

Множество S, очевидно, содержит a и ограничено b по построению. По свойству наименьшей верхней границы S имеет наименьшую верхнюю границу c ∈ [ a , b ] . Следовательно, c сам по себе является элементом некоторого открытого множества U α , и из этого следует, для c < b что [ a , c + δ ] может быть покрыто конечным числом U α для некоторого достаточно малого δ > 0 . Это доказывает, что c + δ S и c не является верхней границей для S . Следовательно, c = b .

История [ править ]

Важность свойства наименьшей верхней границы была впервые признана Бернаром Больцано в его статье 1817 года « Чисто аналитическое доказательство теоремы о том, что между любыми двумя значениями, дающими противоположный результат, существует хотя бы один действительный корень уравнения» . [3]

См. также [ править ]

Примечания [ править ]

  1. ^ Бартл и Шерберт (2011) определяют «свойство полноты» и говорят, что его также называют «высшим свойством». (стр. 39)
  2. ^ Уиллард говорит, что упорядоченное пространство «X является дедекиндовым, если каждое подмножество X, имеющее верхнюю границу, имеет наименьшую верхнюю границу». (стр. 124-5, Задача 17E.)
  3. ^ Раман-Сундстрем, Маня (август – сентябрь 2015 г.). «Педагогическая история компактности». Американский математический ежемесячник . 122 (7): 619–635. arXiv : 1006.4131 . doi : 10.4169/amer.math.monthly.122.7.619 . JSTOR   10.4169/amer.math.monthly.122.7.619 . S2CID   119936587 .

Ссылки [ править ]

  • Эбботт, Стивен (2001). Понимание анализа . Тексты для бакалавриата по математике. Нью-Йорк: Springer-Verlag. ISBN  0-387-95060-5 .
  • Клип, Хараламбос Д ; Буркиншоу, Оуэн (1998). Принципы реального анализа (Третье изд.). Академический. ISBN  0-12-050257-7 .