Крышка (топология)

Из Википедии, бесплатной энциклопедии

В математике и, в частности, в теории множеств , покрытие (или покрытие ) множества представляет семейство подмножеств собой чей союз состоит из всех . Более формально, если это индексированное семейство подмножеств (индексируется набором ), затем это обложка если . Таким образом, коллекция это обложка если каждый элемент принадлежит хотя бы одному из подмножеств .

Подобложка обложки набора — это часть обложки, которая также покрывает набор. Покрытие называется открытым, если каждый его элемент является открытым множеством .

Покрытие в топологии [ править ]

Покрытия обычно используются в контексте топологии . Если набор является топологическим пространством , то накрытие из представляет собой набор подмножеств из чей союз - все пространство . В этом случае мы говорим, что крышки , или что множества крышка .

Кроме того, если является (топологическим) подпространством затем обложка , представляет собой набор подмножеств из чей союз содержит , то есть, это обложка если

То есть мы можем покрыть с любым набором сам или устанавливает в родительском пространстве .

Пусть C — покрытие топологического X. пространства Подпокрытие , C C — это подмножество все еще покрывает X. которое

Мы говорим, что C является открытое покрытие , если каждый из его членов является открытым множеством (т.е. каждое U α содержится в T , где T — топология на X ).

Покрытие X называется локально конечным, если каждая точка X имеет окрестность , пересекающую только конечное число множеств в покрытии. Формально C = { U α } локально конечна, если для любого существует некоторая окрестность N ( x ) точки x такая, что множество

конечно. Покрытие X называется точечно конечным , если каждая точка X содержится лишь в конечном числе множеств покрытия. Покрытие является точечно конечным, если оно локально конечно, хотя обратное не обязательно верно.

Уточнение [ править ]

Доработка обложки топологического пространства это новая обложка из так, что каждый набор в содержится в некотором множестве . Формально,

представляет собой уточнение если для всех Существует такой, что

Другими словами, существует карта уточнения удовлетворяющий для каждого Это отображение используется, например, в Чеха когомологиях . [1]

Любое подкрытие — это тоже усовершенствование, но не всегда верно обратное. Подобложка составлена ​​из наборов, представленных на обложке, но без некоторых из них; тогда как уточнение производится из любых наборов, которые являются подмножествами наборов в обложке.

Уточняющее соотношение на множестве покрытий транзитивен , иррефлексивен и асимметричен .

Вообще говоря, уточнение данной структуры — это другая, которая в некотором смысле ее содержит. Примеры можно найти при разбиении интервала (одно уточнение существование ), рассматривая топологии ( стандартная топология в евклидовом пространстве является уточнением тривиальной топологии ). При подразделении симплициальных комплексов (первое барицентрическое подразделение симплициального комплекса является уточнением) ситуация несколько иная: каждый симплекс в более тонком комплексе является гранью некоторого симплекса в более грубом, и оба имеют равные лежащие в основе многогранники.

Еще одно понятие утонченности – это звездная утонченность .

Подобложка [ править ]

Простой способ получить подпокрытие — исключить наборы, содержащиеся в другом наборе, в обложке. Рассмотрим конкретно открытые крышки. Позволять быть топологической основой и быть открытым прикрытием Первый дубль Затем представляет собой уточнение . Далее для каждого мы выбираем содержащий (требуется аксиома выбора). Затем является частью Следовательно, мощность подпокрытия открытого покрытия может быть столь же малой, как и мощность любого топологического базиса. Следовательно, в частности, из второй счетности следует, что пространство линделефово .

Компактность [ править ]

Язык покрытий часто используется для определения некоторых топологических свойств, связанных с компактностью . Топологическое пространство X называется

Компактный
если каждое открытое покрытие имеет конечное подпокрытие (или, что то же самое, каждое открытое покрытие имеет конечное уточнение);
Линделёф
если каждое открытое покрытие имеет счетное подпокрытие (или, что то же самое, каждое открытое покрытие имеет счетное уточнение);
Метакомпакт
если каждое открытое покрытие имеет точечно-конечное открытое уточнение;
Паракомпакт
если каждое открытое покрытие допускает локально конечное открытое уточнение.

Дополнительные варианты см. в статьях выше.

Размер покрытия [ править ]

Говорят, что топологическое пространство X имеет размерность покрытия n, если каждое открытое покрытие X имеет точечно-конечное открытое уточнение, такое, что ни одна точка X не включена более чем в n + 1 множество в уточнении, и если n является минимальным значением для что это правда. [2] Если такого минимального n не существует, говорят, что пространство имеет бесконечную накрывающую размерность.

См. также [ править ]

Примечания [ править ]

  1. ^ Ботт, Ту (1982). Дифференциальные формы в алгебраической топологии . п. 111.
  2. ^ Манкрес, Джеймс (1999). Топология (2-е изд.). Прентис Холл . ISBN  0-13-181629-2 .

Ссылки [ править ]

  1. Введение в топологию , второе издание, Теодор В. Гамелен и Роберт Эверист Грин. Дуврские публикации 1999. ISBN   0-486-40680-6
  2. Общая топология , Джон Л. Келли . Компания Д. Ван Ностранд, Инк. Принстон, Нью-Джерси. 1955.

Внешние ссылки [ править ]