Jump to content

H3K14ac

H3K14ac представляет собой эпигенетическую модификацию белка, упаковывающего ДНК, гистона H3 . Это метка, указывающая на ацетилирование 14-го остатка лизина белка гистона H3.

H3K14ac широко не изучался, отчасти из-за отсутствия ранее коммерчески доступных антител. Было показано, что H3K9ac и H3K14ac являются частью активного состояния промотора. Они также присутствуют поверх двухвалентных промоторов и активных энхансеров. H3K14ac также обогащен подмножеством неактивных промоторов.

Домен Tudor метилтрансферазы H3K9 SETDB1 связывается с метилированным H3 как с ацетилированием K14, так и с метилированием K9. SETDB1 подавляет ретровирусы и регуляцию генов.

Ацетилирование и деацетилирование лизина

[ редактировать ]
Ацетилирование лизина

Белки обычно ацетилируются по остаткам лизина , и эта реакция основана на использовании ацетил-кофермента А в качестве донора ацетильной группы. При ацетилировании и деацетилировании гистонов белки гистонов ацетилируются и деацетилируются по остаткам лизина в N-концевом хвосте как часть регуляции гена . Обычно эти реакции катализируются ферментами с активностью гистон-ацетилтрансферазы (HAT) или гистон-деацетилазы (HDAC), хотя HAT и HDAC также могут изменять статус ацетилирования негистоновых белков. [ 1 ]

Регуляция факторов транскрипции, эффекторных белков, молекулярных шаперонов и белков цитоскелета путем ацетилирования и деацетилирования является важным механизмом посттрансляционной регуляции. [ 2 ] Эти регуляторные механизмы аналогичны фосфорилированию и дефосфорилированию под действием киназ и фосфатаз . Мало того, что состояние ацетилирования белка может изменить его активность, но недавно было высказано предположение, что эта посттрансляционная модификация может также пересекаться с фосфорилированием , метилированием , убиквитинированием , сумойлированием и другими для динамического контроля клеточной передачи сигналов. [ 3 ] [ 4 ] [ 5 ]

В области эпигенетики было показано , ) гистонов что ацетилирование (и деацетилирование является важным механизмом регуляции транскрипции генов. Однако гистоны — не единственные белки, регулируемые посттрансляционным ацетилированием.

Номенклатура

[ редактировать ]

H3K14acin указывает на ацетилирование лизина 14 на субъединице белка гистона H3: [ 6 ]

Сокр. Значение
Н3 Семейство гистонов H3
К стандартное сокращение для лизина
14 положение аминокислотного остатка
(считая от N-конца)
и ацетильная группа

Модификации гистонов

[ редактировать ]

Геномная ДНК эукариотических клеток обернута вокруг специальных белковых молекул, известных как гистоны . Комплексы, образующиеся в результате закольцовывания ДНК, известны как хроматин . Основной структурной единицей хроматина является нуклеосома : она состоит из основного октамера гистонов (H2A, H2B, H3 и H4), а также линкерного гистона и около 180 пар оснований ДНК. Эти коровые гистоны богаты остатками лизина и аргинина. Карбоксильный (С)-конец этих гистонов способствует взаимодействиям гистонов-гистонов, а также взаимодействиям гистонов с ДНК. Заряженные амино-(N)-концевые хвосты являются местом посттрансляционных модификаций, таких как та, которая наблюдается в H3K36me3 . [ 7 ] [ 8 ]

Эпигенетические последствия

[ редактировать ]

Посттрансляционная модификация хвостов гистонов либо с помощью комплексов, модифицирующих гистоны, либо комплексов, ремоделирующих хроматин, интерпретируется клеткой и приводит к сложному комбинаторному транскрипционному результату. Считается, что код гистонов определяет экспрессию генов посредством сложного взаимодействия между гистонами в определенной области. [ 9 ] Нынешнее понимание и интерпретация гистонов основаны на двух крупномасштабных проектах: ENCODE и Epigenomic Roadmap. [ 10 ] Целью эпигеномного исследования было изучение эпигенетических изменений по всему геному. Это привело к состояниям хроматина, которые определяют геномные области путем группировки взаимодействий различных белков и/или модификаций гистонов вместе. Состояние хроматина исследовали в клетках дрозофилы путем изучения места связывания белков в геноме. Использование ChIP-секвенирования позволило выявить участки генома, характеризующиеся различной полосообразностью. [ 11 ] У дрозофилы также были профилированы различные стадии развития, акцент был сделан на актуальности модификаций гистонов. [ 12 ] Анализ полученных данных привел к определению состояний хроматина на основе модификаций гистонов. [ 13 ]

Геном человека был аннотирован состояниями хроматина. Эти аннотированные состояния можно использовать как новые способы аннотирования генома независимо от базовой последовательности генома. Эта независимость от последовательности ДНК подтверждает эпигенетическую природу модификаций гистонов. Состояния хроматина также полезны для идентификации регуляторных элементов, не имеющих определенной последовательности, таких как энхансеры. Этот дополнительный уровень аннотаций позволяет глубже понять регуляцию генов, специфичных для клеток. [ 14 ]

H3K14ac широко не изучался, отчасти из-за отсутствия ранее коммерчески доступных антител. Было показано, что H3K9ac и H3K14ac являются частью активного состояния промотора. Они также присутствуют поверх двухвалентных промоторов и активных энхансеров. H3K14ac также обогащен подмножеством неактивных промоторов. [ 15 ]

Тройной домен Тюдора метилтрансферазы H3K9 SETDB1 связывается с метилированным H3 как с ацетилированием K14, так и с метилированием K9. SETDB1 подавляет ретровирусы и регуляцию генов. [ 16 ]

Ацетилирование гистоновой метки можно обнаружить различными способами:

1. Секвенирование иммунопреципитации хроматина ( ChIP-секвенирование ) измеряет количество обогащенной ДНК после связывания с целевым белком и иммунопреципитации. Это приводит к хорошей оптимизации и используется in vivo для выявления связывания ДНК с белками, происходящего в клетках. ChIP-Seq можно использовать для идентификации и количественной оценки различных фрагментов ДНК для различных модификаций гистонов в геномной области. [ 17 ]

2. Секвенирование микрококковой нуклеазы (MNase-seq) используется для исследования областей, которые связаны хорошо расположенными нуклеосомами. Для определения положения нуклеосом используют фермент микрококковой нуклеазы. Видно, что хорошо расположенные нуклеосомы имеют обогащение последовательностей. [ 18 ]

3. Анализ секвенирования хроматина, доступного транспозазам (ATAC-seq), используется для поиска областей, свободных от нуклеосом (открытый хроматин). Он использует гиперактивный транспозон Tn5 для выделения локализации нуклеосом. [ 19 ] [ 20 ] [ 21 ]

См. также

[ редактировать ]
  1. ^ Садул К., Бойо С., Пабион М., Хохбин С. (2008). «Регуляция белкового обмена ацетилтрансферазами и деацетилазами». Биохимия . 90 (2): 306–12. дои : 10.1016/j.biochi.2007.06.009 . ПМИД   17681659 .
  2. ^ Глозак М.А., Сенгупта Н., Чжан Х, Сето Э (2005). «Ацетилирование и деацетилирование негистоновых белков». Джин . 363 : 15–23. дои : 10.1016/j.gene.2005.09.010 . ПМИД   16289629 .
  3. ^ Ян XJ, Сето Э (2008). «Ацетилирование лизина: кодифицированные перекрестные помехи с другими посттрансляционными модификациями» . Мол. Клетка . 31 (4): 449–61. doi : 10.1016/j.molcel.2008.07.002 . ПМЦ   2551738 . ПМИД   18722172 .
  4. ^ Эдде Б., Денуле П., де Нешо Б., Кулаков А., Бервальд-Неттер Ю., Грос Ф. (1989). «Посттрансляционные модификации тубулина в культивируемых нейронах головного мозга и астроглии мышей». Биол. Клетка . 65 (2): 109–117. дои : 10.1016/0248-4900(89)90018-x . ПМИД   2736326 .
  5. ^ Марута Х., Грир К., Розенбаум Дж.Л. (1986). «Ацетилирование альфа-тубулина и его связь со сборкой и разборкой микротрубочек» . Дж. Клеточная Биол . 103 (2): 571–579. дои : 10.1083/jcb.103.2.571 . ПМК   2113826 . ПМИД   3733880 .
  6. ^ Хуан, Суминг; Литт, Майкл Д.; Энн Блейки, К. (30 ноября 2015 г.). Эпигенетическая экспрессия и регуляция генов . Эльзевир Наука. стр. 21–38. ISBN  9780127999586 .
  7. ^ Рутенбург А.Дж., Ли Х., Патель DJ, Allis CD (декабрь 2007 г.). «Многовалентное взаимодействие модификаций хроматина с помощью связанных связывающих модулей» . Обзоры природы. Молекулярно-клеточная биология . 8 (12): 983–94. дои : 10.1038/nrm2298 . ПМЦ   4690530 . ПМИД   18037899 .
  8. ^ Кузаридес Т (февраль 2007 г.). «Модификации хроматина и их функции» . Клетка . 128 (4): 693–705. дои : 10.1016/j.cell.2007.02.005 . ПМИД   17320507 .
  9. ^ Дженувейн Т., Эллис, компакт-диск (август 2001 г.). «Перевод гистонового кода». Наука . 293 (5532): 1074–80. CiteSeerX   10.1.1.453.900 . дои : 10.1126/science.1063127 . ПМИД   11498575 . S2CID   1883924 .
  10. ^ Бирни Э. , Стаматояннопулос Х.А. , Дутта А. , Гиго Р., Гингерас Т.Р., Маргулис Э.Х. и др. (Консорциум проекта ENCODE) (июнь 2007 г.). «Идентификация и анализ функциональных элементов в 1% генома человека в рамках пилотного проекта ENCODE» . Природа . 447 (7146): 799–816. Бибкод : 2007Natur.447..799B . дои : 10.1038/nature05874 . ПМК   2212820 . ПМИД   17571346 .
  11. ^ Филион Г.Дж., ван Беммель Дж.Г., Брауншвейг Ю., Талхаут В., Кинд Дж., Уорд Л.Д., Бругман В., де Кастро И.Дж., Керховен Р.М., Буссемакер Х.Дж., ван Стинсел Б. (октябрь 2010 г.). «Систематическое картирование расположения белков выявило пять основных типов хроматина в клетках дрозофилы» . Клетка . 143 (2): 212–24. дои : 10.1016/j.cell.2010.09.009 . ПМЦ   3119929 . ПМИД   20888037 .
  12. ^ Рой С., Эрнст Дж., Харченко П.В., Херадпур П., Негре Н., Итон М.Л. и др. (Консорциум modENCODE) (декабрь 2010 г.). «Идентификация функциональных элементов и регуляторных цепей с помощью modENCODE дрозофилы» . Наука . 330 (6012): 1787–97. Бибкод : 2010Sci...330.1787R . дои : 10.1126/science.1198374 . ПМК   3192495 . ПМИД   21177974 .
  13. ^ Харченко П.В., Алексеенко А.А., Шварц Ю.Б., Минода А., Риддл Н.С., Эрнст Дж. и др. (март 2011 г.). «Комплексный анализ хроматинового ландшафта Drosophila melanogaster» . Природа . 471 (7339): 480–5. Бибкод : 2011Natur.471..480K . дои : 10.1038/nature09725 . ПМК   3109908 . ПМИД   21179089 .
  14. ^ Кундадже А., Меулеман В., Эрнст Дж., Биленки М., Йен А., Херави-Мусави А., Херадпур П., Чжан З. и др. (Консорциум по эпигеномике «Дорожная карта») (февраль 2015 г.). «Интегративный анализ 111 эталонных эпигеномов человека» . Природа . 518 (7539): 317–30. Бибкод : 2015Natur.518..317. . дои : 10.1038/nature14248 . ПМК   4530010 . ПМИД   25693563 .
  15. ^ Кармодия, Кришанпал; Кребс, Арно Р.; Улад-Абдельгани, Мустафа; Кимура, Хироши; Тора, Ласло (2012). «Ацетилирование H3K9 и H3K14 происходит одновременно во многих генных регуляторных элементах, в то время как H3K14ac отмечает подмножество неактивных индуцируемых промоторов в эмбриональных стволовых клетках мыши» . БМК Геномика . 13 : 424. дои : 10.1186/1471-2164-13-424 . ПМЦ   3473242 . ПМИД   22920947 .
  16. ^ Юрковская, Рената З.; Цинь, Су; Кунгуловский, Горан; Темпель, Вольфрам; Лю, Янли; Баштрыков Павел; Штифельмайер, Юдит; Юрковский, Томаш П.; Кудитипуди, Шрикантх; Вейрих, Сара; Тамаш, Ралука; Ву, Хун; Домбровский, Людмила; Лоппнау, Питер; Рейнхардт, Ричард; Мин, Джинжун; Йельч, Альберт (2017). «H3K14ac связан с метилированием H3K9 тройным тюдоровским доменом SETDB1» . Природные коммуникации . 8 (1): 2057. Бибкод : 2017NatCo...8.2057J . дои : 10.1038/s41467-017-02259-9 . ПМЦ   5727127 . ПМИД   29234025 .
  17. ^ «Полногеномное IP-секвенирование хроматина (ChIP-Seq)» (PDF) . Иллюмина . Проверено 23 октября 2019 г.
  18. ^ «МЭН-Seq/Mnase-Seq» . иллюмина . Проверено 23 октября 2019 г.
  19. ^ Буэнростро, Джейсон Д.; Ву, Пекин; Чанг, Ховард Ю.; Гринлиф, Уильям Дж. (2015). «ATAC-seq: метод анализа доступности хроматина по всему геному» . Современные протоколы молекулярной биологии . 109 : 21.29.1–21.29.9. дои : 10.1002/0471142727.mb2129s109 . ISBN  9780471142720 . ПМЦ   4374986 . ПМИД   25559105 .
  20. ^ Шеп, Алисия Н.; Буэнростро, Джейсон Д.; Денни, Сара К.; Шварц, Катя; Шерлок, Гэвин; Гринлиф, Уильям Дж. (2015). «Структурированные нуклеосомные отпечатки пальцев позволяют картировать архитектуру хроматина в регуляторных регионах с высоким разрешением» . Геномные исследования . 25 (11): 1757–1770. дои : 10.1101/гр.192294.115 . ISSN   1088-9051 . ПМК   4617971 . ПМИД   26314830 .
  21. ^ Песня, Л.; Кроуфорд, GE (2010). «DNase-seq: метод высокого разрешения для картирования активных генных регуляторных элементов по всему геному клеток млекопитающих» . Протоколы Колд-Спринг-Харбора . 2010 (2): pdb.prot5384. дои : 10.1101/pdb.prot5384 . ISSN   1559-6095 . ПМЦ   3627383 . ПМИД   20150147 .
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 7b596f3ea1ee463932f8d3b1f634e469__1704944220
URL1:https://arc.ask3.ru/arc/aa/7b/69/7b596f3ea1ee463932f8d3b1f634e469.html
Заголовок, (Title) документа по адресу, URL1:
H3K14ac - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)