Jump to content

Триболюминесценция

(Перенаправлено с Фрактолюминесценции )
никотина Триболюминесценция L -салицилата

Триболюминесценция — это явление, при котором свет генерируется при механическом разрыве, разрыве, царапинах, измельчении или трении материала (см. Трибология ). Это явление до конца не изучено, но, по-видимому, в большинстве случаев вызвано разделением и воссоединением статических электрических зарядов , см. также трибоэлектрический эффект . Термин происходит от греческого τρίβειν («тереть»; см. трибологию ) и латинского lumen (свет). Триболюминесценцию можно наблюдать при разломе кристаллов сахара и отслаивании липкой ленты.

Триболюминесценция часто является синонимом фрактолюминесценции (термин, который в основном используется только для обозначения света, излучаемого разбитыми кристаллами). Триболюминесценция отличается от пьезолюминесценции тем, что пьезолюминесцентный материал излучает свет при деформации, а не при разрушении. Это примеры механолюминесценции , то есть свечения, возникающего в результате любого механического воздействия на твердое тело .

Церемониальная погремушка Uncompahgre Ute Buffalo из сыромятной кожи, наполненная кристаллами кварца. Вспышки света видны, когда кристаллы кварца подвергаются механическому воздействию в темноте.

Кварцевые погремушки коренного народа Ункомпагре-юте

[ редактировать ]

Коренные жители Ункомпагре -юте из Центрального Колорадо — одна из первых задокументированных групп людей в мире, которым приписывают применение механолюминесценции, включающей использование кристаллов кварца для генерации света. [ 1 ] [ 2 ] Юты изготовили уникальные церемониальные погремушки из сыромятной кожи буйвола, которые наполнили прозрачными кристаллами кварца, собранными в горах Колорадо и Юты. Когда погремушки трясли ночью во время церемоний, трение и механическое напряжение кристаллов кварца, сталкивающихся друг с другом, вызывали вспышки света, видимые сквозь полупрозрачную шкуру буйвола.

Ранние научные отчеты

[ редактировать ]

Первое зарегистрированное наблюдение приписывается английскому ученому Фрэнсису Бэкону , когда он записал в своей книге Novum Organum 1620 года : «Хорошо известно, что весь сахар , засахаренный или простой, если он твердый, будет искриться, если его разбить или поцарапать в темноте». [ 3 ] Ученый Роберт Бойль также сообщил о некоторых своих работах по триболюминесценции в 1663 году. [ 4 ] В 1675 году астроном Жан-Феликс Пикард заметил, что его барометр светился в темноте, когда он нес его. Его барометр представлял собой стеклянную трубку, частично заполненную ртутью. Пустое пространство над ртутью светилось всякий раз, когда ртуть скользила по стеклянной трубке. [ 5 ]

В конце 1790-х годов при производстве сахара стало производиться больше кристаллов рафинированного сахара. Эти кристаллы были сформированы в большой твердый конус для транспортировки и продажи. Этот твердый сахарный рожок нужно было разбить на пригодные для использования куски с помощью устройства для зажима сахара . Люди начали замечать крошечные вспышки света, когда сахар «откусывался» при слабом освещении, что является установленным примером триболюминесценции. [ 6 ]

Механизм действия

[ редактировать ]

Остается несколько неясностей относительно эффекта. Современная теория триболюминесценции, основанная на кристаллографических, спектроскопических и других экспериментальных данных, заключается в том, что при разрушении асимметричных материалов заряд разделяется. Когда заряды рекомбинируются, электрический разряд ионизирует окружающий воздух, вызывая вспышку света. Дальнейшие исследования показывают, что кристаллы, демонстрирующие триболюминесценцию, часто лишены симметрии и являются плохими проводниками. [ 7 ] Однако существуют вещества, которые нарушают это правило и не обладают асимметрией, но проявляют триболюминесценцию, например йодид гексакис(антипирин)тербия. [ 8 ] Считается, что эти материалы содержат примеси, которые делают вещество локально асимметричным. Дополнительную информацию о некоторых возможных процессах можно найти на странице, посвященной трибоэлектрическому эффекту.

Считается, что биологический феномен триболюминесценции контролируется рекомбинацией во свободных радикалов время механической активации. [ 9 ]

В обычных материалах

[ редактировать ]
Триболюминесценция в кварце

Некоторые предметы домашнего обихода и вещества можно рассматривать как демонстрирующие это свойство:

  • Обычная самоклеящаяся лента скотч ») имеет светящуюся линию в месте отрыва конца ленты от рулона. [ 10 ] В 1953 году советские ученые заметили, что при размотке рулона ленты в вакууме возникают рентгеновские лучи. [ 11 ] Механизм генерации рентгеновских лучей был дополнительно изучен в 2008 году. [ 12 ] [ 13 ] [ 14 ] Аналогичное рентгеновское излучение наблюдалось и у металлов. [ 15 ]
  • Вскрытие конверта, заклеенного полимерным клеем, может привести к появлению света, который в темноте можно рассматривать как синие вспышки. [ 16 ]
  • Когда кристаллы сахара измельчаются, создаются крошечные электрические поля, разделяющие положительные и отрицательные заряды, которые создают искры при попытке воссоединиться. Wint-O-Green Life Savers особенно хорошо подходят для создания таких искр, поскольку масло грушанки ( метилсалицилат ) флуоресцентно и преобразует ультрафиолетовый свет в синий свет . [ 17 ] [ 18 ]

Алмаз ; может начать светиться, если его потереть это иногда случается с бриллиантами во время шлифовки грани или распиливания алмаза в процессе огранки . Бриллианты могут светиться синим или красным светом. Некоторые другие минералы, такие как кварц , являются триболюминесцентными и излучают свет при трении друг о друга. [ 19 ]

Триболюминесценция как биологическое явление наблюдается при механической деформации и контактной электризации поверхности эпидермиса костных и мягких тканей, при пережевывании пищи, при трении в суставах позвонков, при половом акте, при кровообращении . [ 20 ] [ 21 ]

Гидроабразивная резка керамики (например, кафеля ) создает желто-оранжевое свечение в месте воздействия очень высокоскоростного потока.

Химические вещества, отличающиеся триболюминесценцией.

[ редактировать ]
  • Тетракис(дибензоилметид)триэтиламмоний европия при разрушении его кристаллов излучает особенно ярко-красные вспышки. [ 22 ] [ 23 ]
  • Трифенилфосфинбис(пиридин)тиоцианатомедь(I) излучает достаточно сильный синий свет при разрушении его кристаллов. Это свечение не такое яркое, как красное свечение; однако его все равно очень хорошо видно невооруженным глазом в стандартных настройках. [ 24 ] [ 25 ]
  • N-ацетилантраниловая кислота излучает глубокий синий свет при разрушении ее кристаллов. [ 26 ]

Фрактолюминесценция

[ редактировать ]

Фрактолюминесценцию часто используют как синоним триболюминесценции. [ 27 ] Это излучение света от трещины (а не от трения) кристалла , но разрушение часто происходит при трении. В зависимости от атомного и молекулярного состава кристалла, когда кристалл разрушается, может произойти разделение зарядов, в результате чего одна сторона расколотого кристалла становится положительно заряженной , а другая сторона - отрицательно. Как и в триболюминесценции, если разделение зарядов приводит к достаточно большому электрическому потенциалу , может произойти разряд через зазор и через газовую ванну между границами раздела. Потенциал, при котором это происходит, зависит от диэлектрических свойств газа ванны. [ 28 ]

Распространение ЭМИ при гидроразрыве

[ редактировать ]

излучение электромагнитного излучения (ЭМИ) при пластическом деформировании и распространении трещин Изучено в металлах и горных породах. Эмиссия ЭМИ от металлов и сплавов также была исследована и подтверждена. Молоцкий представил дислокационный механизм этого типа излучения ЭМИ. [ 29 ] В 2005 году Шрилакшми и Мисра сообщили о дополнительном явлении вторичного ЭМИ во время пластической деформации и распространения трещин в металлах и сплавах без покрытия и с металлическим покрытием. [ 30 ]

ЭМИ во время микропластической деформации и распространения трещин в некоторых металлах и сплавах, а также переходного магнитного поля генерация во время образования шейки в ферромагнитных металлах были описаны Мисрой (1973–75), которые были подтверждены и исследованы несколькими исследователями. [ 31 ] Тудик и Валуев (1980) смогли измерить частоту ЭМИ при разрушении железа и алюминия при растяжении в районе 100 ТГц с помощью фотоумножителей . Шрилакшми и Мисра (2005a) также сообщили о дополнительном явлении вторичного электромагнитного излучения в металлах и сплавах без покрытия и с металлическим покрытием. Если твердый материал подвергается напряжениям большой амплитуды, которые могут вызвать пластическую деформацию и разрушение, возникают такие излучения, как тепловая, акустическая, ионная и экзоэмиссия.

ЭМИ, вызванное деформацией

[ редактировать ]

Изучение деформации имеет важное значение для разработки новых материалов. Деформация металлов зависит от температуры, типа приложенного напряжения, скорости деформации, окисления и коррозии. ЭМИ, вызванное деформацией, можно разделить на три категории: эффекты в ионно-кристаллических материалах, эффекты в горных породах и гранитах и ​​эффекты в металлах и сплавах. Эмиссия ЭМИ зависит от ориентации зерен в отдельных кристаллах, поскольку свойства материала в разных направлениях различны. [ 32 ] Амплитуда импульса ЭМИ увеличивается по мере роста трещины по мере разрыва новых атомных связей, что приводит к ЭМИ. Пульс начинает затухать, когда растрескивание прекращается. [ 33 ] Наблюдения в ходе экспериментов показали, что излучаемые сигналы ЭМИ содержат компоненты смешанной частоты.

Методы испытаний для измерения ЭМИ

[ редактировать ]

Наиболее широко используемый метод испытаний на растяжение используется для характеристики механических свойств материалов. Из любой полной записи испытаний на растяжение можно получить важную информацию об упругих свойствах материала, характере и степени пластической деформации, текучести, пределе прочности и ударной вязкости. Информация, полученная в результате одного испытания, оправдывает широкое использование испытаний на растяжение при исследовании технических материалов. Поэтому исследования излучений ЭМИ в основном основаны на испытаниях образцов на растяжение. Из экспериментов можно показать, что образование трещин при растяжении возбуждает более интенсивное ЭМИ, чем растрескивание при сдвиге, увеличение упругости, прочности и скорости нагружения при одноосном нагружении увеличивает амплитуду. Коэффициент Пуассона является ключевым параметром для определения характеристик ЭМИ при трехосном сжатии. [ 34 ] Если коэффициент Пуассона ниже, материалу труднее деформироваться в поперечном направлении и, следовательно, увеличивается вероятность новых трещин.

См. также

[ редактировать ]
  1. ^ «Большой взрыв BBC о триболюминесценции» . Архивировано из оригинала 21 декабря 2019 г. Проверено 25 декабря 2019 г.
  2. ^ Доусон, Тимоти (2010). «Изменение цветов: сейчас вы их видите, теперь нет». Технология окраски . 126 (4): 177–188. дои : 10.1111/j.1478-4408.2010.00247.x .
  3. ^ Бэкон, Фрэнсис. Novum Organum. Архивировано 3 мая 2006 г. в Wayback Machine.
  4. ^ Бойль, Роберт (1663). КОПИЯ ПИСЬМА, которое мистер Бойль написал сэру Роберту Моррею в сопровождении «Наблюдений, касающихся сияющего алмаза» . стр. 391–411. {{cite book}}: |website= игнорируется ( помогите )
  5. ^ (Посох) (1676). «Опыт, проведенный в [Парижской] обсерватории на простом барометре относительно нового явления, которое там было обнаружено». Journal des Sçavans (парижское издание) (на французском языке): 112–113.
  6. ^ Уик, Фрэнсис Г. (1940). «Триболюминесценция сахара» . ДЖОСА . 30 (7): 302–306. дои : 10.1364/JOSA.30.000302 .
  7. ^ Фонтено, РС; Бхат, КН; Холлерман, Вашингтон; Аггарвал, доктор медицины; Нгуен, К.М. (2012). «Сравнение выхода триболюминесценции и времени затухания дибензоилметида европия триэтиламмония, синтезированного с использованием различных растворителей». CrystEngComm . 14 (4). Королевское химическое общество (RSC): 1382–1386. дои : 10.1039/c2ce06277a . ISSN   1466-8033 .
  8. ^ У. Клегг, Г. Бурхилл и И. Сейдж (апрель 2002 г.). «Трийодид гексакис (антипирин-O) тербия (III) при 160 К: подтверждение центросимметричной структуры блестящего триболюминесцентного комплекса» . Acta Crystallographica Раздел E. 58 (4): м159–м161. дои : 10.1107/S1600536802005093 .
  9. ^ Орел, ВЭ; Алексеев С.Б.; Гриневич, Ю.А. (1992), «Механолюминесценция: анализ лимфоцитов при неоплазиях», Биолюминесценция и хемилюминесценция , 7 (4): 239–244, doi : 10.1002/bio.1170070403 , PMID   1442175
  10. ^ Сандерсон, Кэтрин (22 октября 2008 г.). «Клейкая лента генерирует рентгеновские лучи». Природа : новости.2008.1185. дои : 10.1038/news.2008.1185 .
  11. ^ Карасев В.В.; Кротова Н.А.; Дерягин, Борис Владимирович (1953). Исследование электронной эмиссии при снятии слоя высокополимера со стекла в вакууме . OCLC   1037003456 .
  12. ^ Камара, CG; Эскобар, СП; Херд, младший; Путтерман, С.Дж. (2008). «Корреляция между наносекундными рентгеновскими вспышками и прерывистым трением в отслаивающейся ленте». Природа . 455 (7216): 1089–1092. Бибкод : 2008Natur.455.1089C . дои : 10.1038/nature07378 . S2CID   4372536 .
  13. ^ Чанг, Кеннет (23 октября 2008 г.). «Скотч раскрывает силу рентгеновских лучей» . Нью-Йорк Таймс . Архивировано из оригинала 30 сентября 2017 г. Проверено 25 февраля 2017 г.
  14. ^ Кэтрин Бурзак (23 октября 2008 г.). «Рентгеновские снимки, сделанные скотчем» . Обзор технологий . Архивировано из оригинала 14 мая 2012 г. Проверено 9 октября 2012 г.
  15. ^ Кришна, Дж.Н.; Чоудхури, С.К.Рой; Бисвас, А. (2014). «Рентгеновское излучение при трении металлов» (PDF) . Трибология в промышленности . 36 (3): 229–235. ПроКвест   2555415391 .
  16. ^ Александр, Эндрю Дж. (5 сентября 2012 г.). «Механизм межфазного ионного переноса, обеспечивающий интенсивную люминесценцию, наблюдаемую при открытии самозапечатывающихся конвертов» (PDF) . Ленгмюр . 28 (37). Американское химическое общество (ACS): 13294–13299. дои : 10.1021/la302689y . hdl : 20.500.11820/78782d2a-b87f-4fda-813c-6a282d1fd9c6 . ISSN   0743-7463 . ПМИД   22924818 . S2CID   32480331 .
  17. ^ «Триболюминесценция» . Архивировано из оригинала 20 октября 2009 г.
  18. ^ «Триболюминесценция» . Sciencenews.org. 17 мая 1997 г. Архивировано из оригинала 26 июня 1997 г. Проверено 9 октября 2012 г.
  19. ^ «Преследование камней в Арканзасе: эксперименты с кварцем» . Rockhoundingar.com. Архивировано из оригинала 24 апреля 2012 г. Проверено 9 октября 2012 г.
  20. ^ Орел, В.Е. (1989). Триболюминесценция как биологическое явление и методы ее исследования . Биологическая люминесценция: материалы первой международной школы, Замок Ксёнж, Вроцлав, Польша, 20-23 июня 1989 г. Сингапур: World Scientific. стр. 131–147. дои : 10.13140/RG.2.1.2298.5443 . ISBN  9789810204051 .
  21. ^ Орел, Валерий Евгеньевич; Алексеев Сергей Б.; Гриневич Юрий А. (октябрь 1992 г.). «Механолюминесценция: анализ лимфоцитов при неоплазии». Журнал биолюминесценции и хемилюминесценции . 7 (4): 239–244. дои : 10.1002/bio.1170070403 . ПМИД   1442175 .
  22. ^ Хёрт, ЧР; Макавой, Н.; Бьорклунд, С.; Филипеску, Н. (октябрь 1966 г.). «Высокоинтенсивная триболюминесценция в тетракис (дибензоилметид)-триэтиламмонии европия». Природа . 212 (5058): 179–180. Бибкод : 1966Natur.212R.179H . дои : 10.1038/212179b0 . S2CID   4165699 .
  23. ^ Фонтено, Росс; Бхат, Камала; Холлерман, Уильям А; Аггарвал, Мохан (1 сентября 2016 г.). «Европий тетракис дибензоилметид триэтиламмоний: синтез, добавки и обзор применения». Тезисы совещаний ECS . MA2016-02 (42): 3158. doi : 10.1149/ma2016-02/42/3158 .
  24. ^ «Создание синих кристаллов Smash-Glow (демонстрация триболюминесценции)» . Ютуб .
  25. ^ Маркетти, Фабио; Ди Никола, Коррадо; Петтинари, Риккардо; Тимохин Иван; Петтинари, Клаудио (10 апреля 2012 г.). «Синтез фотолюминесцентного и триболюминесцентного соединения меди (I): эксперимент для лаборатории передовой неорганической химии». Журнал химического образования . 89 (5): 652–655. Бибкод : 2012ЖЧЭд..89..652М . дои : 10.1021/ed2001494 .
  26. ^ Эриксон Дж. (октябрь 1972 г.). «N-ацетилантраниловая кислота. Высокотриболюминесцентный материал». J Chem Educ . 49 (10): 688. Бибкод : 1972JChEd..49..688E . дои : 10.1021/ed049p688 .
  27. ^ ИЮПАК , Сборник химической терминологии , 2-е изд. («Золотая книга») (1997). Интернет-исправленная версия: (2006–) « Триболюминесценция ». дои : 10.1351/goldbook.T06499
  28. ^ Примечание. Это явление можно продемонстрировать, вынув лед из морозильной камеры в затемненной комнате, где лед издает трескающиеся звуки из-за внезапного теплового расширения. Если окружающий свет достаточно тусклый, можно наблюдать вспышки белого света от раскалывающегося льда.
  29. ^ Чаухан, VS1 (2008), «Влияние скорости деформации и повышенной температуры на излучение электромагнитного излучения во время пластической деформации и распространения трещин в титановых листах ASTM B 265 класса 2», Journal of Materials Science , 43 (16): 5634–5643, Bibcode : 2008JMatS..43.5634C , doi : 10.1007/s10853-008-2590-5 , S2CID   137105959 {{citation}}: CS1 maint: числовые имена: список авторов ( ссылка )
  30. ^ Шрилакшми, Б.; Мисра, А. (8 сентября 2005 г.). «Вторичное электромагнитное излучение при пластической деформации и распространении трещин в углеродистой стали без покрытия и с луженым покрытием». Журнал материаловедения . 40 (23). ООО «Спрингер Сайенс энд Бизнес Медиа»: 6079–6086. дои : 10.1007/s10853-005-1293-4 . ISSN   0022-2461 . S2CID   135922668 .
  31. ^ Чаухан, Вишал С.; Мисра, Ашок (1 июля 2010 г.). «Электромагнитное излучение при пластической деформации в условиях неограниченного квазистатического сжатия в металлах и сплавах». Международный журнал исследования материалов . 101 (7). Вальтер де Грюйтер ГмбХ: 857–864. дои : 10.3139/146.110355 . ISSN   2195-8556 . S2CID   138866328 .
  32. ^ КУМАР, Раджив (2006), «Влияние параметров обработки на излучение электромагнитного излучения во время пластической деформации и распространения трещин в медно-цинковых сплавах», Journal of Zhejiang University Science A , 7 (1): 1800–1809, doi : 10.1631/ jzus.2006.a1800 , S2CID   122149160
  33. ^ Фрид, В; Рабинович, А; Бахат, Д. (7 июля 2003 г.). «Электромагнитное излучение, вызванное переломом». Журнал физики D: Прикладная физика . 36 (13): 1620–1628. Бибкод : 2003JPhD...36.1620F . дои : 10.1088/0022-3727/36/13/330 . S2CID   250758753 .
  34. ^ Фрид, В. (2000), «Контроль водонасыщения методом электромагнитного излучения в горно-удароопасных пластах», Журнал прикладной геофизики , 43 (1): 5–13, Bibcode : 2000JAG....43....5F , дои : 10.1016/S0926-9851(99)00029-4

Дальнейшее чтение

[ редактировать ]
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 949f8089c19d74cfb0cb373c53b5a5c0__1713064920
URL1:https://arc.ask3.ru/arc/aa/94/c0/949f8089c19d74cfb0cb373c53b5a5c0.html
Заголовок, (Title) документа по адресу, URL1:
Triboluminescence - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)