Jump to content

Заказ-6-3 квадратные соты

(Перенаправлено из апейрогонных сот Order-6-3 )
Заказ-6-3 квадратные соты
Тип Обычные соты
Символ Шлефли {4,6,3}
Диаграмма Кокстера
Клетки {4,6}
Лица {4}
Вершинная фигура {6,3}
Двойной {3,6,4}
Группа Коксетера [4,6,3]
Характеристики Обычный

В геометрии гиперболического трехмерного пространства квадратные соты порядка 6-3 или соты 4,6,3 представляют собой обычную мозаику , заполняющую пространство (или соты ). Каждая бесконечная ячейка состоит из шестиугольной мозаики , вершины которой лежат на 2-гиперцикле , каждый из которых имеет предельную окружность на идеальной сфере.

Геометрия

[ редактировать ]

Символ Шлефли квадратных сот порядка 6-3 — {4,6,3}, с тремя шестиугольными плитками порядка 4, сходящимися на каждом краю. этой Вершинная фигура соты представляет собой шестиугольную мозаику {6,3}.


Модель диска Пуанкаре

Идеальная поверхность
[ редактировать ]

Это часть серии правильных многогранников и сот с символом { p ,6,3} Шлефли и додекаэдрическими вершинными фигурами :

Пятиугольные соты Орден-6-3

[ редактировать ]
Пятиугольные соты Орден-6-3
Тип Обычные соты
Символ Шлефли {5,6,3}
Диаграмма Кокстера
Клетки {5,6}
Лица {5}
Вершинная фигура {6,3}
Двойной {3,6,5}
Группа Коксетера [5,6,3]
Характеристики Обычный

В геометрии гиперболического трехмерного пространства пятиугольные соты порядка 6-3 или соты 5,6,3 представляют собой регулярную мозаику , заполняющую пространство (или соты ). Каждая бесконечная ячейка состоит из пятиугольной мозаики шестого порядка, вершины которой лежат на 2-гиперцикле , каждый из которых имеет предельную окружность на идеальной сфере.

Символ Шлефли пятиугольных сот порядка 6-3 - это {5,6,3}, с тремя пятиугольными плитками порядка 6, сходящимися на каждом краю. этой Вершинная фигура соты представляет собой шестиугольную мозаику {6,3}.


Модель диска Пуанкаре

Идеальная поверхность

Орден-6-3 сот шестиугольный

[ редактировать ]
Орден-6-3 сот шестиугольный
Тип Обычные соты
Символ Шлефли {6,6,3}
Диаграмма Кокстера
Клетки {6,6}
Лица {6}
Вершинная фигура {6,3}
Двойной {3,6,6}
Группа Коксетера [6,6,3]
Характеристики Обычный

В геометрии гиперболического трехмерного пространства шестиугольные соты порядка 6-3 или соты 6,6,3 представляют собой регулярную мозаику , заполняющую пространство (или соты ). Каждая бесконечная ячейка состоит из шестиугольной мозаики порядка 6, вершины которой лежат на 2-гиперцикле , каждый из которых имеет предельную окружность на идеальной сфере.

Символ Шлефли шестиугольных сот порядка 6–3 — {6,6,3}, с тремя шестиугольными плитками порядка 5, сходящимися на каждом краю. этой Вершинная фигура соты представляет собой шестиугольную мозаику {6,3}.


Модель диска Пуанкаре

Идеальная поверхность

Орден-6-3 соты апейрогонные

[ редактировать ]
Орден-6-3 соты апейрогонные
Тип Обычные соты
Символ Шлефли {∞,6,3}
Диаграмма Кокстера
Клетки {∞,6}
Лица Апейрогон {∞}
Вершинная фигура {6,3}
Двойной {3,6,∞}
Группа Коксетера [∞,6,3]
Характеристики Обычный

В геометрии гиперболического трехмерного пространства апейрогональные соты порядка 6-3 или соты ∞,6,3 представляют собой регулярную мозаику , заполняющую пространство (или соты ). Каждая бесконечная ячейка состоит из апейрогонального разбиения порядка 6, вершины которого лежат на 2-гиперцикле , каждый из которых имеет предельную окружность на идеальной сфере.

Символ Шлефли сотовой апейрогональной мозаики — {∞,6,3}, с тремя апейрогональными мозаиками 6-го порядка, сходящимися на каждом ребре. этой Вершинная фигура соты представляет собой шестиугольную мозаику {6,3}.

Проекция «идеальной поверхности» ниже представляет собой плоскость на бесконечности в модели полупространства Пуанкаре H3. На нем изображен аполлонический узор из кругов внутри самого большого круга.


Модель диска Пуанкаре

Идеальная поверхность

См. также

[ редактировать ]
  • Коксетер , Правильные многогранники , 3-е. изд., Dover Publications, 1973. ISBN   0-486-61480-8 . (Таблицы I и II: Правильные многогранники и соты, стр. 294–296)
  • Красота геометрии: двенадцать эссе (1999), Dover Publications, LCCN   99-35678 , ISBN   0-486-40919-8 (Глава 10, Правильные соты в гиперболическом пространстве ) Таблица III
  • Джеффри Р. Уикс. Форма пространства, 2-е издание ISBN   0-8247-0709-5 (главы 16–17: Геометрии трехмерных многообразий I, II)
  • Джордж Максвелл, Сферические упаковки и группы гиперболического отражения , ЖУРНАЛ АЛГЕБРЫ 79,78-97 (1982) [1]
  • Хао Чен, Жан-Филипп Лаббе, лоренцианские группы Кокстера и шаровые упаковки Бойда-Максвелла , (2013) [2]
  • Визуализация гиперболических сот arXiv:1511.02851 Ройс Нельсон, Генри Сегерман (2015)
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: ef5bca38558a08606d19739e08f765c6__1722700320
URL1:https://arc.ask3.ru/arc/aa/ef/c6/ef5bca38558a08606d19739e08f765c6.html
Заголовок, (Title) документа по адресу, URL1:
Order-6-3 square honeycomb - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)