Майк Алдер
Майкл Д. Эйдж [1] — австралийский математик, ранее доцент Университета Западной Австралии . [2] Олдер известен своими популярными произведениями, такими как сардонические статьи об отсутствии у молодых людей базовых арифметических навыков. [3]
Карьера
[ редактировать ]Алдер получил степень бакалавра наук. по физике в Имперском колледже , затем докторскую степень по алгебраической топологии в Ливерпульском университете и степень магистра инженерных наук. наук. из Университета Западной Австралии. [4] До 2011 года он был доцентом Университета Западной Австралии. [5]
Пылающий лазерный меч Ньютона
[ редактировать ]Пылающий лазерный меч Ньютона (также известный как бритва Олдера ) — философская бритва, изобретенная Олдером и обсуждавшаяся в эссе в майском/июньском выпуске журнала Philosophy Now за 2004 год . [6] Принцип, который учитывает различные взгляды ученых и философов на эпистемологию и знание , был резюмирован Алдером следующим образом: [6]
не будет показано, что они В своей самой слабой форме оно гласит, что мы не должны оспаривать утверждения, если с помощью точной логики и/или математики имеют наблюдаемые последствия. В своей самой сильной форме он требует списка наблюдаемых последствий и формальной демонстрации того, что они действительно являются последствиями заявленного утверждения.
Бритва шутливо названа в честь Исаака Ньютона , так как она вдохновлена ньютоновской мыслью и называется «пылающим лазерным мечом», потому что она «гораздо острее и опаснее, чем бритва Оккама ». [6]
Олдер пишет, что средний учёный не философию слишком высоко ценит , считая её «где-то между социологией и литературной критикой ». [6] Он резко критиковал то, что он считает непропорциональным влиянием греческой философии , особенно платонизма , на современную философию . учёного Он противопоставляет попперовский подход философа платоническому подходу , который он описывает как чистый разум . Он иллюстрирует это, среди прочего, на примере парадокса непреодолимой силы . По мнению Олдера, ответ ученого на парадокс «Что происходит, когда на неподвижный объект действует непреодолимая сила» состоит в том, что посылка вопроса ошибочна: либо объект перемещается (и, следовательно, объект является подвижным), либо он нет (таким образом, сила сопротивляема): [6]
В конце концов я пришел к выводу, что язык больше, чем вселенная, что можно говорить в одном предложении о вещах, которых невозможно найти в реальном мире. Реальный мир мог бы содержать некий объект, который до сих пор никогда не перемещался, и он мог бы содержать силу, которой никогда не удалось успешно противостоять, но вопрос о том, действительно ли объект неподвижен, можно было бы узнать только в том случае, если бы были испробованы все возможные силы. на нем и оставил его неподвижным. Так что дело можно было решить, опробовав доселе непреодолимую силу на доселе неподвижном объекте и посмотреть, что произошло. Либо объект будет двигаться, либо нет, что говорит нам только о том, что либо до сих пор неподвижный объект не был на самом деле неподвижным, либо что до сих пор непреодолимая сила на самом деле была сопротивляемой.
То есть для ученого вопрос может быть решен путем эксперимента. Олдер, однако, признает, что «хотя ньютоновское настойчивое требование гарантировать, что любое утверждение можно проверить путем наблюдения… несомненно, отсекает всякую ерунду, оно также, по-видимому, отсекает и почти все остальное». [6]
См. также
[ редактировать ]- Оправданное рассуждение - рассуждение, которое рационально убедительно, но не дедуктивно обосновано.
- Фальсифицируемость - свойство утверждения, которому можно логически противоречить.
- Бритва Хэнлона – поговорка о том, что глупость важнее злого умысла
- Бритва Хитченса – общее правило отклонения утверждений, сделанных без доказательств
- Логический позитивизм - Движение в западной философии - аналогичный эпистемологический редукционистский стандарт.
- Заблуждение Макнамары – ошибочные рассуждения, основанные исключительно на числовых показателях.
Ссылки
[ редактировать ]- ^ Олдер, Майкл Д. (2001). Введение в математическое моделирование . Рай для книг.
- ^ «Профиль персонала Майка Алдера: Университет Западной Австралии» . Архивировано из оригинала 16 апреля 2011 года . Проверено 22 июля 2010 г.
- ^ Клайв Джеймс (20 июля 2007 г.). «Новые собаки и старые трюки» . Новости Би-би-си . Проверено 22 июля 2010 г.
- ^ Олдер, Майк (ноябрь 2006 г.). «Групповые преобразования объектов в видеоизображениях». Журнал математического изображения и видения . 26 (1–2): 73–84. дои : 10.1007/s10851-006-6864-8 . S2CID 12130999 .
- ^ «Общие новости» (PDF) . Газета Австралийского математического общества . Май 2011.
- ^ Jump up to: а б с д и ж Олдер, Майк (2004). «Пылающий лазерный меч Ньютона» . Философия сейчас . 46 : 29–33. Архивировано из оригинала 4 декабря 2017 года . Проверено 26 января 2018 г. Также доступно в формате PDF: Олдер, Майк (2004). «Пылающий лазерный меч Ньютона» (PDF) . Домашняя страница Майка Алдера . Университет Западной Австралии . Архивировано из оригинала (PDF) 14 ноября 2011 года.
Внешние ссылки
[ редактировать ]- «Домашняя страница Майка Алдера» . 15 мая 2007 г. Архивировано из оригинала 14 апреля 2011 г.