Jump to content

Почти наверняка

В теории вероятностей , что событие говорят произойдет почти наверняка (иногда сокращается как ) , если оно происходит с вероятностью 1 (относительно меры вероятности). [1] Другими словами, набор исходов, при которых событие не происходит, имеет вероятность 0, даже если этот набор не может быть пустым. Это понятие аналогично понятию « почти всюду » в теории меры . В вероятностных экспериментах на конечном выборочном пространстве с ненулевой вероятностью для каждого результата нет разницы между почти наверняка и наверняка (поскольку вероятность, равная 1, влечет за собой включение всех точек выборки ); однако это различие становится важным, когда пространство выборки представляет собой бесконечное множество . [2] потому что бесконечное множество может иметь непустые подмножества с вероятностью 0.

Некоторые примеры использования этой концепции включают сильные и однородные версии закона больших чисел , непрерывность траекторий броуновского движения и теорему о бесконечной обезьяне . термины почти наверняка (ас) и почти всегда Также используются (аа). Почти никогда не описывает противоположность почти наверняка : событие, которое происходит с нулевой вероятностью, случается почти никогда . [3]

Формальное определение [ править ]

Позволять быть вероятностным пространством . Событие произойдет почти наверняка, если . Эквивалентно, произойдет почти наверняка, если вероятность не происходит, равно нулю : . В более общем смысле любой набор (не обязательно в ) произойдет почти наверняка, если содержится в нулевом наборе : подмножестве в такой, что . [4] Понятие почти наверняка зависит от вероятностной меры. . Если необходимо подчеркнуть эту зависимость, принято говорить, что событие происходит Р — почти наверняка или почти наверняка .

Показательные примеры [ править ]

В общем, событие может произойти «почти наверняка», даже если рассматриваемое вероятностное пространство включает результаты, которые не принадлежат событию, как иллюстрируют следующие примеры.

Метание дротика [ править ]

Представьте себе, что вы бросаете дротик в единичный квадрат (квадрат площадью 1 ) так, чтобы дротик всегда попадал в точную точку квадрата, таким образом, что каждая точка квадрата будет с одинаковой вероятностью поражена . Поскольку площадь квадрата равна 1, вероятность того, что дротик попадет в какую-либо конкретную часть квадрата, равна площади этой части. Например, вероятность того, что дротик попадет в правую половину квадрата, равна 0,5, поскольку площадь правой половины равна 0,5.

Далее рассмотрим случай, когда дротик попадает ровно в точку на диагоналях единичного квадрата. Поскольку площадь диагоналей квадрата равна 0, вероятность того, что дротик приземлится точно по диагонали, равна 0. То есть дротик почти никогда не приземлится по диагонали (т. е. почти наверняка он не приземлится по диагонали). ), хотя множество точек на диагоналях не пусто и точка на диагонали не менее возможна, чем любая другая точка.

Многократное подбрасывание монеты [ править ]

Рассмотрим случай, когда подбрасывается монета (возможно, необъективная), что соответствует вероятностному пространству , где событие происходит, если перевернуть голову, и если хвост подброшен. Для этой конкретной монеты предполагается, что вероятность выпадения орла равна , из чего следует, что дополнительное событие — подбрасывание хвоста — имеет вероятность .

Теперь предположим, что был проведен эксперимент, в котором монету бросали несколько раз, и результаты и предположение, что результат каждого броска не зависит от всех остальных (т. е. они независимы и одинаково распределены ; iid ). Определите последовательность случайных величин в пространстве для подбрасывания монеты, где . то есть каждый фиксирует результат этот флип.

В этом случае возможным результатом эксперимента является любая бесконечная последовательность орлов и решек. Однако любая конкретная бесконечная последовательность орлов и решек имеет вероятность 0 быть точным результатом (бесконечного) эксперимента. Это связано с тем, что предположение iid подразумевает, что вероятность перевернуть все головы вверх сальто - это просто . Сдача в аренду дает 0, так как по предположению. Результат один и тот же, независимо от того, насколько сильно мы смещаем монету в сторону орла, пока мы ограничиваем быть строго между 0 и 1. Фактически, тот же результат верен даже в нестандартном анализе, где допускаются бесконечно малые вероятности. [5]

При этом событие «последовательность бросков содержит хотя бы один " тоже произойдет почти наверняка (т. е. с вероятностью 1).Но если вместо бесконечного числа бросков переворачивание прекращается через некоторое конечное время, скажем, 1 000 000 бросков, то вероятность получения последовательности, в которой выпадут все орлы, , больше не будет равна 0, а вероятность выпадения хотя бы одной решки, , больше не будет равно 1 (т. е. событие уже не почти наверняка).

Асимптотически почти наверняка [ править ]

В асимптотическом анализе говорят, что свойство выполняется асимптотически почти наверняка (aas), если в последовательности множеств вероятность сходится к 1. Это эквивалентно сходимости по вероятности . Например, в теории чисел большое число асимптотически почти наверняка является составным согласно теореме о простых числах ; а в теории случайных графов утверждение « подключено » (где обозначает графики на вершины с вероятностью ребра ) верно тогда, когда для некоторых

   [6]

В теории чисел это называется « почти все », то есть «почти все числа составные». Точно так же в теории графов это иногда называют «почти наверняка». [7]

См. также [ править ]

Примечания [ править ]

  1. ^ Вайсштейн, Эрик В. «Почти наверняка» . mathworld.wolfram.com . Проверено 16 ноября 2019 г.
  2. ^ «Почти наверняка – Math Central» . mathcentral.uregin.ca . Проверено 16 ноября 2019 г.
  3. ^ Гредель, Эрих; Колайтис, Фокион Г.; Либкин Леонид ; Маркс, Мартен; Спенсер, Джоэл; Варди, Моше Ю.; Венема, Иде; Вайнштейн, Скотт (2007). Теория конечных моделей и ее приложения . Спрингер. п. 232 . ISBN  978-3-540-00428-8 .
  4. ^ Жакод, Жан; Проттер (2004). Основы вероятности . Спрингер. п. 37 . ISBN  978-3-540-438717 .
  5. ^ Уильямсон, Тимоти (1 июля 2007 г.). «Насколько вероятно существование бесконечной последовательности голов?» . Анализ . 67 (3): 173–180. дои : 10.1093/анализ/67.3.173 . ISSN   0003-2638 .
  6. ^ Фридгут, Эхуд; Рёдль, Войтех; Ручинский, Анджей; Тетали, Прасад (январь 2006 г.). «Резкий порог для случайных графов с одноцветным треугольником в каждой раскраске ребер». Мемуары Американского математического общества . 179 (845). Книжный магазин АМС: 3–4. дои : 10.1090/memo/0845 . ISSN   0065-9266 . S2CID   9143933 .
  7. ^ Спенсер, Джоэл Х. (2001). «0. Два стартовых примера» . Странная логика случайных графов . Алгоритмы и комбинаторика. Том. 22. Спрингер. п. 4. ISBN  978-3540416548 .

Ссылки [ править ]

  • Роджерс, LCG; Уильямс, Дэвид (2000). Диффузии, марковские процессы и мартингалы . Том. 1: Фонды. Издательство Кембриджского университета. ISBN  978-0521775946 .
  • Уильямс, Дэвид (1991). Вероятность с Мартингалами . Кембриджские математические учебники. Издательство Кембриджского университета. ISBN  978-0521406055 .
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 3e52691c7ab7c1e856b2d32f9af7cf00__1717905000
URL1:https://arc.ask3.ru/arc/aa/3e/00/3e52691c7ab7c1e856b2d32f9af7cf00.html
Заголовок, (Title) документа по адресу, URL1:
Almost surely - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)