Полудифференцируемость
В исчислении понятия односторонней дифференцируемости и полудифференцируемости функции действительнозначной чем , f действительной переменной слабее дифференцируемость . В частности, функция f называется дифференцируемой справа в точке a, если, грубо говоря, производная может быть определена, когда аргумент функции x перемещается в точку a справа, и дифференцируемой слева в точке a, если производная может быть определена как x перемещается влево .
Одномерный случай [ править ]
В математике левая производная и правая производная — это производные (скорости изменения функции), определенные для движения только в одном направлении (влево или вправо; то есть к более низким или более высоким значениям) аргументом функции.
Определения [ править ]
Пусть f обозначает вещественную функцию, определенную на подмножестве I действительных чисел.
Если a ∈ I — предельная точка I ∩ [ a и , ∞) односторонний предел
существует как действительное число, то f называется дифференцируемым справа в точке a а предел ∂ + f ( a ) называется правой производной f , в точке a .
Если a ∈ I — предельная точка I ∩ (–∞, a ] и односторонний предел
существует как действительное число, то f называется дифференцируемым слева в точке a а предел ∂ – f ( a ) называется левой производной f , в точке a .
Если a ∈ I является предельной точкой I ∩ [ a , ∞) и I ∩ (–∞, a ] и если f дифференцируема слева и справа в точке a , то f называется полудифференцируемой в точке a .
Если левая и правая производные равны, то они имеют то же значение, что и обычная («двунаправленная») производная. Можно также определить симметричную производную , которая равна среднему арифметическому левой и правой производных (если они обе существуют), поэтому симметричная производная может существовать, когда обычная производная не существует. [1]
Замечания и примеры [ править ]
- Функция дифференцируема во внутренней точке а своей области определения тогда и только тогда, когда она полудифференцируема в точке а и левая производная равна правой производной.
- Примером полудифференцируемой функции, которая не является дифференцируемой, является абсолютного значения . функция , при a = 0. Легко находим
- Если функция полудифференцируема в точке a , это означает, что она непрерывна в точке a .
- Индикаторная функция 1 [0,∞) дифференцируема справа при каждом вещественном a , но разрывна в нуле (заметим, что эта индикаторная функция не дифференцируема слева в нуле).
Приложение [ править ]
Если вещественная дифференцируемая функция f , определенная на интервале I действительной прямой, имеет всюду нулевую производную, то она постоянна, как применение теоремы о среднем значении показывает . Предположение о дифференцируемости можно ослабить до непрерывности и односторонней дифференцируемости f . Версия для дифференцируемых справа функций приведена ниже, версия для дифференцируемых слева функций аналогична.
Теорема — . Пусть f вещественная непрерывная функция , определенная на произвольном интервале I действительной прямой. Если f дифференцируема справа в каждой точке a ∈ I , которая не является верхней границей интервала, и если эта правая производная всегда равна нулю, f постоянна то .
Для доказательства от противного предположим, что существует a < b в I такое, что f ( a ) ≠ f ( b ) . Затем
Определите c как нижнюю границу всех тех x в интервале ( a , b ], для которых разностный коэффициент f ε превышает по абсолютной величине, т.е.
Из непрерывности f следует, что c < b и | ж ( c ) – ж ( а ) | знак равно ε ( c – а ) . В точке c правая производная f по предположению равна нулю, следовательно, существует d в интервале ( c , b ] с | f ( x ) – f ( c ) | ≤ ε ( x – c ) для всех x в ( c , d ] . Следовательно, по неравенству треугольника ,
для всех x в [ c , d ) , что противоречит определению c .
Дифференциальные операторы, действующие слева или справа [ править ]
Другим распространенным применением является описание производных, рассматриваемых как бинарные операторы в инфиксной записи , в которой производные должны применяться либо к левому, либо к правому операнду . Это полезно, например, при определении обобщений скобки Пуассона . Для пары функций f и g левая и правая производные определяются соответственно как
В нотации бра-кет оператор производной может действовать на правый операнд как регулярную производную или на левый как отрицательную производную. [2]
Случай более высокой размерности [ править ]
Это приведенное выше определение можно обобщить на вещественнозначные функции f, определенные на подмножествах R. н используя более слабую версию производной по направлению . Пусть a — внутренняя точка области определения f . Тогда f называется полудифференцируемым в точке a, если для любого направления u ∈ R н предел
с R существует как действительное число.
Таким образом, полудифференцируемость слабее, чем дифференцируемость Гато , для которой принимается предел выше h → 0, не ограничивая h только положительными значениями.
Например, функция является полудифференцируемым при , но там нет дифференцируемого Гато. Действительно, с
(Обратите внимание, что это обобщение не эквивалентно исходному определению для n = 1, поскольку понятие односторонних предельных точек заменяется более сильным понятием внутренних точек.)
Свойства [ править ]
- Любая выпуклая функция на выпуклом открытом подмножестве R н является полудифференцируемым.
- В то время как каждая полудифференцируемая функция одной переменной непрерывна; это уже не так для нескольких переменных.
Обобщение [ править ]
Вместо вещественных функций можно рассматривать функции, принимающие значения в R. н или в банаховом пространстве .
См. также [ править ]
- Производная
- Производная по направлению
- Частная производная
- Градиент
- Производные торты
- Производная Фреше
- Производная (обобщения)
- Формулировка фазового пространства § Звездное произведение
- Производные Дини
Ссылки [ править ]
- ^ Питер Р. Мерсер (2014). Подробнее об исчислении одной переменной . Спрингер. п. 173. ИСБН 978-1-4939-1926-0 .
- ^ Дирак, Поль (1982) [1930]. Принципы квантовой механики . США: Издательство Оксфордского университета. ISBN 978-0198520115 .
- Преда, В.; Кицеску, И. (1999). «О квалификации ограничений в задачах многокритериальной оптимизации: полудифференцируемый случай». Дж. Оптим. Теория Прикл . 100 (2): 417–433. дои : 10.1023/А:1021794505701 . S2CID 119868047 .