Jump to content

Причинно-следственный вывод

Причинный вывод — это процесс определения независимого фактического эффекта конкретного явления, которое является компонентом более крупной системы. Основное различие между причинным выводом и выводом ассоциации заключается в том, что причинный вывод анализирует реакцию переменной эффекта при изменении причины переменной эффекта. [ 1 ] [ 2 ] Изучение того, почему происходят события, называется этиологией и может быть описано с использованием языка научных причинных обозначений . Говорят, что причинный вывод предоставляет доказательства причинности, теоретически обоснованной причинным рассуждением .

Причинно-следственный вывод широко изучается во всех науках. В последние десятилетия получили распространение несколько инноваций в разработке и внедрении методологии, предназначенной для определения причинно-следственной связи. Причинно-следственные выводы остаются особенно трудными там, где экспериментирование затруднено или невозможно, что характерно для большинства наук.

Подходы к причинному выводу широко применимы во всех типах научных дисциплин, и многие методы причинного вывода, разработанные для одних дисциплин, нашли применение в других дисциплинах. В этой статье описывается основной процесс причинного вывода и подробно описываются некоторые из наиболее традиционных тестов, используемых в различных дисциплинах; однако это не следует ошибочно воспринимать как предположение, что эти методы применимы только к этим дисциплинам, а просто что они наиболее часто используются в этой дисциплине.

Причинно-следственную связь трудно выполнить, и среди ученых ведутся серьезные споры о том, как правильно определить причинно-следственную связь. Несмотря на другие нововведения, сохраняются опасения по поводу неправильного приписывания учеными корреляционных результатов причинно-следственными причинами, использования учеными неверных методологий и преднамеренного манипулирования учеными аналитическими результатами с целью получения статистически значимых оценок. Особую озабоченность вызывает использование регрессионных моделей, особенно моделей линейной регрессии.

Определение

[ редактировать ]

Выявление причины чего-либо описывается как:

  • «...приведение к выводу, что что-то является или может быть причиной чего-то другого». [ 3 ]
  • «Идентификация причины или причин явления путем установления ковариации причины и следствия, временных отношений с причиной, предшествующей следствию, и устранения вероятных альтернативных причин». [ 4 ]

Методология

[ редактировать ]

Причинно-следственный вывод проводится посредством изучения систем, в которых предполагается, что мера одной переменной влияет на меру другой. Причинно-следственный вывод проводится с учетом научного метода . Первым шагом причинно-следственного вывода является формулирование фальсифицируемой нулевой гипотезы , которая впоследствии проверяется статистическими методами . по частоте Статистический вывод — это использование статистических методов для определения вероятности того, что данные случайно возникают при нулевой гипотезе; Байесовский вывод используется для определения влияния независимой переменной. [ 5 ] Статистический вывод обычно используется для определения разницы между вариациями исходных данных, которые являются случайными вариациями или эффектом четко определенного причинного механизма. Примечательно, что корреляция не подразумевает причинно-следственную связь , поэтому изучение причинно-следственной связи связано как с изучением потенциальных причинных механизмов, так и с вариациями между данными. [ нужна ссылка ] Часто востребованным стандартом причинного вывода является эксперимент, в котором лечение назначается случайным образом, но все другие мешающие факторы остаются постоянными. Большая часть усилий в области причинно-следственных выводов направлена ​​на воспроизведение экспериментальных условий.

В эпидемиологических исследованиях используются разные эпидемиологические методы сбора и измерения данных о факторах риска и их эффекте, а также разные способы измерения связи между ними. Результаты обзора методов причинно-следственного вывода, проведенного в 2020 году, показали, что использование существующей литературы для программ клинической подготовки может быть затруднительным. Это связано с тем, что публикуемые статьи часто предполагают продвинутую техническую подготовку, они могут быть написаны с различных статистических, эпидемиологических, компьютерных или философских точек зрения, методологические подходы продолжают быстро расширяться, а многие аспекты причинно-следственных выводов получают ограниченное освещение. [ 6 ]

Общие рамки для причинного вывода включают модель причинного пирога (компонент-причина), структурную причинную модель Перла ( причинная диаграмма + до-исчисление ), моделирование структурными уравнениями и причинную модель Рубина (потенциальный результат), которые часто используются в таких областях, как как социальные науки и эпидемиология. [ 7 ]

Экспериментальный

[ редактировать ]

Экспериментальная проверка причинных механизмов возможна с использованием экспериментальных методов. Основная мотивация эксперимента — поддерживать постоянными другие экспериментальные переменные, одновременно целенаправленно манипулируя интересующей переменной. Если эксперимент дает статистически значимые эффекты в результате манипулирования только переменной лечения, есть основания полагать, что причинный эффект может быть приписан переменной лечения, предполагая, что были соблюдены другие стандарты планирования эксперимента.

Квазиэкспериментальный

[ редактировать ]

Квазиэкспериментальная проверка причинных механизмов проводится в тех случаях, когда традиционные экспериментальные методы недоступны. Это может быть результатом непомерно высоких затрат на проведение эксперимента или изначальной невозможности проведения эксперимента, особенно экспериментов, которые связаны с большими системами, такими как экономика избирательных систем, или с методами лечения, которые, как считается, представляют опасность для здоровья. -быть испытуемыми. Квазиэксперименты также могут проводиться в тех случаях, когда информация скрывается по юридическим причинам.

Подходы в эпидемиологии

[ редактировать ]

Эпидемиология изучает закономерности здоровья и болезней в определенных популяциях живых существ , чтобы сделать выводы о причинах и следствиях. Связь между воздействием предполагаемого фактора риска и заболеванием может наводить на размышления, но не эквивалентна причинно-следственной связи, поскольку корреляция не подразумевает причинно-следственную связь . Исторически постулаты Коха использовались с XIX века для определения того, является ли микроорганизм причиной заболевания. В 20 веке критерии Брэдфорда Хилла , описанные в 1965 году [ 8 ] использовались для оценки причинно-следственной связи переменных за пределами микробиологии, хотя даже эти критерии не являются исключительными способами определения причинно-следственной связи.

В молекулярной эпидемиологии изучаемые явления находятся на уровне молекулярной биологии , включая генетику, где биомаркеры являются свидетельством причины или следствия.

Недавняя тенденция [ когда? ] Целью исследования является выявление доказательств влияния воздействия на молекулярную патологию в пораженных тканях или клетках в развивающейся междисциплинарной области молекулярной патологической эпидемиологии (МПЭ). [ нужен сторонний источник ] Связь воздействия с молекулярными патологическими признаками заболевания может помочь оценить причинно-следственную связь. [ нужен сторонний источник ] Учитывая присущую природе гетерогенность данного заболевания, принцип уникальности заболевания, фенотипирование и подтипирование заболеваний являются тенденциями в биомедицинских науках и науках общественного здравоохранения , примером которых являются персонализированная медицина и точная медицина . [ нужен сторонний источник ]

Причинно-следственный граф, в котором скрытые факторы, искажающие Z, влияют на наблюдаемые переменные X , результат y и выбор лечения t .

Причинно-следственный вывод также использовался для оценки эффекта лечения. Предполагая, что набор наблюдаемых симптомов пациента ( X ) вызван набором скрытых причин ( Z ), мы можем выбрать, давать или не давать лечение t . Результатом проведения или невыполнения лечения является оценка эффекта y . Если нет гарантии, что лечение даст положительный эффект, то решение о том, следует ли применять лечение, зависит, в первую очередь, от экспертных знаний, охватывающих причинно-следственные связи. В случае новых заболеваний эти экспертные знания могут быть недоступны. В результате при принятии решений мы полагаемся исключительно на результаты прошлого лечения. Модифицированный вариационный автоэнкодер можно использовать для моделирования причинного графа, описанного выше. [ 9 ] Хотя приведенный выше сценарий можно смоделировать без использования скрытого искажающего фактора (Z), мы утратим понимание того, что симптомы у пациента вместе с другими факторами влияют как на назначение лечения, так и на результат.

Подходы в информатике

[ редактировать ]

Причинный вывод — важная концепция в области причинного искусственного интеллекта . Определение причины и следствия на основе совместных данных наблюдений для двух независимых от времени переменных, скажем, X и Y, решается с использованием асимметрии между данными для некоторой модели в направлениях X → Y и Y → X. Основные подходы основаны на алгоритмическом подходе. модели теории информации и модели шума. [ нужна ссылка ]

Шумовые модели

[ редактировать ]

Включите в модель независимый шумовой член, чтобы сравнить доказательства двух направлений.

Вот некоторые модели шума для гипотезы Y → X с шумом E:

  • Аддитивный шум: [ 10 ]
  • Линейный шум: [ 11 ]
  • Пост-нелинейный: [ 12 ]
  • Гетероскедастический шум:
  • Функциональный шум: [ 13 ]

Общими предположениями в этих моделях являются:

  • Других причин Y нет.
  • X и E не имеют общих причин.
  • Распространение причины не зависит от причинных механизмов.

На интуитивном уровне идея состоит в том, что факторизация совместного распределения P(Причина, Следствие) в P(Причина)*P(Следствие | Причина) обычно дает модели меньшей общей сложности, чем факторизация в P(Следствие)*P. (Причина | Следствие). Хотя понятие «сложность» интуитивно привлекательно, неясно, как его следует точно определить. [ 13 ] Другое семейство методов пытается обнаружить причинно-следственные связи на больших объемах размеченных данных и позволяет прогнозировать более гибкие причинно-следственные связи. [ 14 ]

Подходы в социальных науках

[ редактировать ]

Социальные науки

[ редактировать ]

Социальные науки в целом все больше движутся к включению количественных рамок для оценки причинности. Во многом это было описано как средство придания большей строгости методологии социальных наук. На политологию существенное влияние оказала публикация Гэри Кинга, Роберта Кеохейна и Сиднея Вербы в 1994 году «Проектирование социального исследования» . Кинг, Кеохейн и Верба рекомендуют исследователям применять как количественные, так и качественные методы и использовать язык статистических выводов для быть более четкими в отношении интересующих их предметов и единиц анализа. [ 15 ] [ 16 ] Сторонники количественных методов также все чаще принимают концепцию потенциальных результатов , разработанную Дональдом Рубином , в качестве стандарта для вывода причинно-следственной связи. [ нужна ссылка ]

Хотя большая часть внимания по-прежнему остается на статистических выводах в структуре потенциальных результатов, методологи социальных наук разработали новые инструменты для проведения причинных выводов с использованием как качественных, так и количественных методов, иногда называемых подходом «смешанных методов». [ 17 ] [ 18 ] Сторонники различных методологических подходов утверждают, что разные методологии лучше подходят для разных предметов исследования. Социолог Герберт Смит и политологи Джеймс Махони и Гэри Герц процитировали наблюдение Пола Холланда, статистика и автора статьи 1986 года «Статистика и причинный вывод», что статистический вывод наиболее подходит для оценки «следствий причин», а не для оценки «следствий причин». «причины следствий». [ 19 ] [ 20 ] Качественные методологи утверждают, что формализованные модели причинно-следственной связи, включая отслеживание процессов и теорию нечетких множеств , предоставляют возможности сделать вывод о причинно-следственной связи посредством выявления критических факторов в рамках тематических исследований или посредством процесса сравнения нескольких тематических исследований. [ 16 ] Эти методологии также ценны для субъектов, в которых ограниченное количество потенциальных наблюдений или наличие мешающих переменных ограничивают применимость статистических выводов. [ нужна ссылка ]

В более длительных временных масштабах исследования устойчивости используют причинно-следственные выводы, чтобы связать исторические события с более поздними политическими, экономическими и социальными результатами. [ 21 ]

Экономика и политология

[ редактировать ]

В экономических и политических науках причинно-следственные выводы часто затруднены из-за реальной сложности экономических и политических реалий и неспособности воссоздать многие крупномасштабные явления в рамках контролируемых экспериментов. Причинный вывод в экономических и политических науках продолжает улучшаться в методологии и строгости благодаря повышению уровня технологий, доступных ученым-социологам, увеличению числа социологов и исследований, а также усовершенствованию методологий причинного вывода во всех социальных науках. [ 22 ]

Несмотря на трудности, присущие определению причинно-следственной связи в экономических системах, в этих областях существует несколько широко используемых методов.

Теоретические методы

[ редактировать ]

Экономисты и политологи могут использовать теорию (часто изучаемую в рамках эконометрики, основанной на теории) для оценки величины предположительно причинно-следственных связей в тех случаях, когда они верят, что причинно-следственная связь существует. [ 23 ] Теоретики могут предположить механизм, который считается причинно-следственным, и описать последствия, используя анализ данных, чтобы обосновать предлагаемую ими теорию. Например, теоретики могут использовать логику для построения модели, например, предполагая, что дождь вызывает колебания экономической производительности, но обратное неверно. [ 24 ] Однако использование чисто теоретических утверждений, не дающих никакой прогностической информации, было названо «донаучным», поскольку нет возможности предсказать влияние предполагаемых причинных свойств. [ 5 ] Стоит еще раз подчеркнуть, что регрессионный анализ в социальных науках по своей сути не предполагает причинно-следственной связи, поскольку многие явления могут коррелировать в краткосрочной перспективе или в определенных наборах данных, но не демонстрируют никакой корреляции в другие периоды времени или в других наборах данных. Таким образом, приписывание причинности коррелятивным свойствам является преждевременным в отсутствие четко определенного и обоснованного причинного механизма.

Инструментальные переменные

[ редактировать ]

Метод инструментальных переменных (IV) — это метод определения причинно-следственной связи, который включает устранение корреляции между одной из объясняющих переменных модели и ошибкой модели. Этот метод предполагает, что если член ошибки модели изменяется аналогично изменению другой переменной, то член ошибки модели, вероятно, является эффектом изменения этой объясняющей переменной. Устранение этой корреляции путем введения новой инструментальной переменной уменьшает ошибку, присутствующую в модели в целом. [ 25 ]

Спецификация модели

[ редактировать ]

Спецификация модели — это выбор модели, которая будет использоваться в анализе данных. Ученые-социологи (и, по сути, все ученые) должны определить правильную модель, которую следует использовать, поскольку разные модели хорошо подходят для оценки разных отношений. [ 26 ]

Спецификация модели может быть полезна при определении причинно-следственной связи, которая проявляется медленно, когда последствия действия в один период ощущаются только в более поздний период. Стоит помнить, что корреляции измеряют только то, имеют ли две переменные схожую дисперсию, а не влияют ли они друг на друга в определенном направлении; таким образом, нельзя определить направление причинной связи, основываясь только на корреляциях. Поскольку считается, что причинные действия предшествуют причинным следствиям, социологи могут использовать модель, которая специально рассматривает влияние одной переменной на другую в течение определенного периода времени. Это приводит к использованию переменных, представляющих явления, произошедшие ранее, в качестве эффектов лечения, когда эконометрические тесты используются для поиска более поздних изменений в данных, которые объясняются эффектом таких эффектов лечения, где значимая разница в результатах следует за значимой разницей в эффектах лечения. может указывать на причинно-следственную связь между эффектами лечения и измеряемыми эффектами (например, тесты причинно-следственной связи Грейнджера). Подобные исследования являются примером анализ временных рядов . [ 27 ]

Анализ чувствительности

[ редактировать ]

Другие переменные или регрессоры в регрессионном анализе либо включаются, либо не включаются в различные реализации одной и той же модели, чтобы гарантировать возможность более отдельного изучения различных источников вариаций друг от друга. Это форма анализа чувствительности: это исследование того, насколько чувствительна реализация модели к добавлению одной или нескольких новых переменных. [ 28 ]

Главной мотивирующей проблемой при использовании анализа чувствительности является стремление обнаружить мешающие переменные . Смешивающие переменные — это переменные, которые оказывают большое влияние на результаты статистического теста, но не являются той переменной, которую пытается изучить причинно-следственная связь. Смешивающие переменные могут привести к тому, что регрессор окажется значимым в одной реализации, но не в другой.

Мультиколлинеарность
[ редактировать ]

Другой причиной использования анализа чувствительности является обнаружение мультиколлинеарности . Мультиколлинеарность – это явление, при котором корреляция между двумя объясняющими переменными очень высока. Высокий уровень корреляции между двумя такими переменными может существенно повлиять на результат статистического анализа, когда небольшие изменения в сильно коррелирующих данных могут перевернуть эффект переменной с положительного направления на отрицательное или наоборот. Это неотъемлемое свойство дисперсионного тестирования. Определение мультиколлинеарности полезно при анализе чувствительности, поскольку исключение сильно коррелирующих переменных в различных реализациях модели может предотвратить резкие изменения результатов, возникающие в результате включения таких переменных. [ 29 ]

Однако возможности анализа чувствительности предотвращать пагубные последствия мультиколлинеарности ограничены, особенно в социальных науках, где системы сложны. Поскольку теоретически невозможно включить или даже измерить все мешающие факторы в достаточно сложной системе, эконометрические модели подвержены ошибке общей причины, когда причинные эффекты ошибочно приписываются не той переменной, поскольку правильная переменная не была учтена в модели. исходные данные. Это пример неспособности учесть скрытую переменную . [ 30 ]

Эконометрика на основе дизайна

[ редактировать ]

В последнее время усовершенствованная методология эконометрики, основанной на дизайне, популяризировала использование как естественных экспериментов, так и квазиэкспериментальных исследовательских планов для изучения причинных механизмов, которые, как полагают, выявляют такие эксперименты. [ 31 ]

Ошибка в причинно-следственной связи

[ редактировать ]

Несмотря на достижения в разработке методологий, используемых для определения причинно-следственной связи, остаются значительные недостатки в определении причинно-следственной связи. Эти недостатки можно объяснить как присущими трудностью определения причинно-следственных связей в сложных системах, так и случаями научной халатности.

Помимо трудностей причинно-следственных выводов, среди некоторых крупных групп социологов существует мнение о том, что большое количество ученых, занимающихся общественными науками, используют ненаучную методологию. В этих областях распространена критика в адрес экономистов и социологов, выдающих описательные исследования за причинно-следственные. [ 5 ]

Научная халатность и ошибочная методология

[ редактировать ]

В науках, особенно в социальных науках, ученые обеспокоены широко распространённой научной халатностью. Поскольку научное исследование является широкой темой, существует теоретически безграничное количество способов подорвать причинно-следственный вывод не по вине исследователя. Тем не менее, среди ученых по-прежнему сохраняется обеспокоенность тем, что большое количество исследователей не выполняют основные обязанности или не применяют достаточно разнообразные методы причинного вывода. [ 32 ] [ 22 ] [ 33 ] [ не удалось пройти проверку ] [ 34 ]

Одним из ярких примеров распространенной непричинной методологии является ошибочное предположение о корреляционных свойствах как о причинных свойствах. В коррелирующих явлениях нет внутренней причинности. Регрессионные модели предназначены для измерения дисперсии данных относительно теоретической модели: нет ничего, что могло бы указывать на то, что данные, демонстрирующие высокие уровни ковариации, имеют какую-либо значимую взаимосвязь (при отсутствии предполагаемого причинного механизма с прогностическими свойствами или случайного назначения лечения). Утверждается, что использование ошибочной методологии широко распространено, причем частыми примерами такой халатности является чрезмерное использование корреляционных моделей, особенно чрезмерное использование моделей регрессии и особенно моделей линейной регрессии. [ 5 ] Предположение о том, что два коррелирующих явления по своей сути связаны, является логической ошибкой, известной как ложная корреляция . Некоторые социологи утверждают, что широкое использование методологии, приписывающей ложным корреляциям причинно-следственную связь, наносит ущерб целостности социальных наук, хотя были отмечены улучшения, связанные с более совершенными методологиями. [ 31 ]

Потенциальным эффектом научных исследований, которые ошибочно смешивают корреляцию с причинно-следственной связью, является увеличение количества научных открытий, результаты которых не могут быть воспроизведены третьими лицами. Такая невоспроизводимость является логическим следствием выводов о том, что корреляция лишь временно обобщается до механизмов, не имеющих внутренней взаимосвязи, когда новые данные не содержат предыдущих, идиосинкразических корреляций исходных данных. Дебаты о влиянии врачебной ошибки по сравнению с эффектом, присущим трудностям поиска причинно-следственной связи, продолжаются. [ 35 ] Критики широко распространенных методологий утверждают, что исследователи прибегают к статистическим манипуляциям для публикации статей, которые якобы демонстрируют доказательства причинно-следственной связи, но на самом деле являются примерами ложной корреляции, рекламируемой как доказательство причинно-следственной связи: такие попытки можно назвать P-хакингом . [ 36 ] Чтобы предотвратить это, некоторые выступают за то, чтобы исследователи предварительно регистрировали планы своих исследований до их проведения, чтобы они непреднамеренно не переоценивали невоспроизводимые результаты, которые не были первоначальным предметом исследования, но оказались статистически значимыми в ходе анализа данных. [ 37 ]

См. также

[ редактировать ]
  1. ^ Перл, Иудея (1 января 2009 г.). «Причинно-следственный вывод в статистике: обзор» (PDF) . Статистические опросы . 3 : 96–146. дои : 10.1214/09-SS057 . Архивировано (PDF) из оригинала 6 августа 2010 г. Проверено 24 сентября 2012 г.
  2. ^ Морган, Стивен; Уиншип, Крис (2007). Контрфакты и причинно-следственные выводы . Издательство Кембриджского университета. ISBN  978-0-521-67193-4 .
  3. ^ «причинный вывод» . Британская энциклопедия, Inc. Архивировано из оригинала 3 мая 2015 года . Проверено 24 августа 2014 г.
  4. ^ Джон Шонесси; Юджин Цехмайстер; Жанна Цехмайстер (2000). Методы исследования в психологии . МакГроу-Хилл Гуманитарные/социальные науки/языки. стр. Глава 1: Введение. ISBN  978-0077825362 . Архивировано из оригинала 15 октября 2014 года . Проверено 24 августа 2014 г.
  5. ^ Перейти обратно: а б с д Шродт, Филип А. (1 марта 2014 г.). «Семь смертных грехов современного количественного политического анализа» . Журнал исследований мира . 51 (2): 287–300. дои : 10.1177/0022343313499597 . ISSN   0022-3433 . S2CID   197658213 . Архивировано из оригинала 15 августа 2021 года . Проверено 16 февраля 2021 г.
  6. ^ Ландситтель, Дуглас; Шривастава, Авантика; Кропф, Кристин (2020). «Повествовательный обзор методов причинного вывода и связанных с ним образовательных ресурсов» . Управление качеством в здравоохранении . 29 (4): 260–269. дои : 10.1097/QMH.0000000000000276 . ISSN   1063-8628 . ПМИД   32991545 . S2CID   222146291 . Архивировано из оригинала 15 августа 2021 года . Проверено 26 февраля 2021 г.
  7. ^ Гренландия, Сандер; Брамбак, Бабетта (октябрь 2002 г.). «Обзор связей между методами причинно-следственного моделирования» . Международный журнал эпидемиологии . 31 (5): 1030–1037. дои : 10.1093/ije/31.5.1030 . ISSN   1464-3685 . ПМИД   12435780 .
  8. ^ Хилл, Остин Брэдфорд (1965). «Окружающая среда и болезни: связь или причинная связь?» . Труды Королевского медицинского общества . 58 (5): 295–300. дои : 10.1177/003591576505800503 . ПМЦ   1898525 . ПМИД   14283879 . Архивировано из оригинала 19 февраля 2021 года . Проверено 25 февраля 2014 г.
  9. ^ Луисос, Христос; Шалит, Ури; Муидж, Йорис; Зонтаг, Дэвид; Земель, Ричард; Веллинг, Макс (2017). «Вывод причинно-следственных связей с помощью моделей с глубокими скрытыми переменными». arXiv : 1705.08821 [ stat.ML ].
  10. ^ Хойер, Патрик О. и др. « Нелинейное причинно-следственное открытие с помощью моделей аддитивного шума. Архивировано 2 ноября 2020 года в Wayback Machine ». НИПС. Том. 21. 2008.
  11. ^ Симидзу, Шохей; и др. (2011). «DirectLiNGAM: прямой метод изучения модели линейного негауссова структурного уравнения» (PDF) . Журнал исследований машинного обучения . 12 : 1225–1248. arXiv : 1101.2489 . Архивировано (PDF) из оригинала 23 июля 2021 года . Проверено 27 июля 2019 г.
  12. ^ Чжан, Кун и Аапо Хиваринен. « Об идентифицируемости постнелинейной причинной модели. Архивировано 19 октября 2021 года в Wayback Machine ». Материалы двадцать пятой конференции по неопределенности в искусственном интеллекте. АУАИ Пресс, 2009.
  13. ^ Перейти обратно: а б Муидж, Джорис М. и др. « Вероятностные модели скрытых переменных для различения причины и следствия. Архивировано 22 июля 2020 года в Wayback Machine ». НИПС. 2010.
  14. ^ Лопес-Пас, Дэвид и др. « На пути к теории обучения причинно-следственному выводу. Архивировано 13 марта 2017 года в Wayback Machine » ICML. 2015 год
  15. ^ Кинг, Гэри (2012). Проектирование социального исследования: научный вывод в качественных исследованиях . Принстонский университет. Нажимать. ISBN  978-0691034713 . OCLC   754613241 .
  16. ^ Перейти обратно: а б Махони, Джеймс (январь 2010 г.). «После ККВ». Мировая политика . 62 (1): 120–147. дои : 10.1017/S0043887109990220 . JSTOR   40646193 . S2CID   43923978 .
  17. ^ Кресвелл, Джон В.; Кларк, Вики Л. Плано (2011). Планирование и проведение исследований смешанными методами . Публикации SAGE. ISBN  9781412975179 . Архивировано из оригинала 21 июля 2021 года . Проверено 23 февраля 2021 г.
  18. ^ Сиврайт, Джейсон (сентябрь 2016 г.). «Мультиметодная социальная наука», Джейсон Сиврайт . Кембриджское ядро. дои : 10.1017/CBO9781316160831 . ISBN  9781316160831 . Архивировано из оригинала 21 июля 2021 года . Проверено 18 апреля 2019 г.
  19. ^ Смит, Герберт Л. (10 февраля 2014 г.). «Действия причин и причины следствий: некоторые замечания с социологической стороны» . Социологические методы и исследования . 43 (3): 406–415. дои : 10.1177/0049124114521149 . ПМЦ   4251584 . ПМИД   25477697 .
  20. ^ Герц, Гэри; Махони, Джеймс (2006). «Повесть о двух культурах: противопоставление количественных и качественных исследований». Политический анализ . 14 (3): 227–249. дои : 10.1093/pan/mpj017 . ISSN   1047-1987 .
  21. ^ Сироне, Александра; Пепински, Томас Б. (2022). «Историческое постоянство» . Ежегодный обзор политической науки . 25 (1): 241–259. doi : 10.1146/annurev-polisci-051120-104325 . ISSN   1094-2939 .
  22. ^ Перейти обратно: а б Ангрист, Джошуа Д.; Пишке, Йорн-Штеффен (июнь 2010 г.). «Революция доверия в эмпирической экономике: как лучший дизайн исследований устраняет мошенничество в эконометрике» . Журнал экономических перспектив . 24 (2): 3–30. дои : 10.1257/jep.24.2.3 . hdl : 1721.1/54195 . ISSN   0895-3309 .
  23. ^ Университет Карнеги-Меллон. «Теория причинно-следственной связи – Факультет философии – Колледж гуманитарных и социальных наук Дитриха – Университет Карнеги-Меллон» . www.cmu.edu . Архивировано из оригинала 11 июля 2021 года . Проверено 16 февраля 2021 г.
  24. ^ Саймон, Герберт (1977). Модели открытия . Дордрехт: Спрингер. п. 52.
  25. ^ Ангрист, Джошуа Д.; Крюгер, Алан Б. (2001). «Инструментальные переменные и поиск идентификации: от спроса и предложения к естественным экспериментам» . Журнал экономических перспектив . 15 (4): 69–85. дои : 10.1257/jep.15.4.69 . hdl : 1721.1/63775 . Архивировано из оригинала 6 мая 2021 года . Проверено 16 февраля 2021 г.
  26. ^ Аллен, Майкл Патрик, изд. (1997), «Спецификация модели в регрессионном анализе» , «Понимание регрессионного анализа» , Бостон, Массачусетс: Springer US, стр. 166–170, doi : 10.1007/978-0-585-25657-3_35 , ISBN  978-0-585-25657-3 , заархивировано из оригинала 15 августа 2021 года , получено 16 февраля 2021 года.
  27. ^ Мазиарз, Мариуш (2020). Философия причинности в экономике: причинные выводы и политические предложения . Нью-Йорк: Рутледж.
  28. ^ Сальчиччоли, Джастин Д.; Крутен, Ив; Коморовски, Матье; Маршалл, Доминик К. (2016), Критические данные Массачусетского технологического института (редактор), «Анализ чувствительности и проверка модели», Вторичный анализ электронных медицинских карт , Cham: Springer International Publishing, стр. 263–271, doi : 10.1007/978- 3-319-43742-2_17 , ISBN  978-3-319-43742-2 , PMID   31314264
  29. ^ Илловски, Барбара (2013). «Вводная статистика» . openstax.org . Архивировано из оригинала 6 февраля 2017 года . Проверено 16 февраля 2021 г.
  30. ^ Хеншен, Тобиас (2018). «Принципиальная неубедительность причинно-следственных данных в макроэкономике». Европейский журнал философии науки . 8 (3): 709–733. дои : 10.1007/s13194-018-0207-7 . S2CID   158264284 .
  31. ^ Перейти обратно: а б Ангрист Джошуа и Пишке Йорн-Штеффен (2008). В основном безобидная эконометрика: спутник эмпирика . Принстон: Издательство Принстонского университета.
  32. ^ Эйкен, Кристофер Х. (июнь 2002 г.). «На пути к новой политической методологии: микрофонды и ART» . Ежегодный обзор политической науки . 5 (1): 423–450. doi : 10.1146/annurev.polisci.5.112801.080943 . ISSN   1094-2939 .
  33. ^ Дауэс, Робин М. (1979). «Надежная красота неправильных линейных моделей при принятии решений» . Американский психолог . 34 (7): 571–582. дои : 10.1037/0003-066X.34.7.571 . Архивировано из оригинала 21 июля 2021 года . Проверено 16 февраля 2021 г.
  34. ^ Ванденбрук, Ян П; Бродбент, Алекс; Пирс, Нил (декабрь 2016 г.). «Причинность и причинный вывод в эпидемиологии: необходимость плюралистического подхода» . Международный журнал эпидемиологии . 45 (6): 1776–1786. дои : 10.1093/ije/dyv341 . ISSN   0300-5771 . ПМЦ   5841832 . ПМИД   26800751 .
  35. ^ Гренландия, Сандер (январь 2017 г.). «За и против методологий: некоторые перспективы недавних дебатов о причинных и статистических выводах» . Европейский журнал эпидемиологии . 32 (1): 3–20. дои : 10.1007/s10654-017-0230-6 . ISSN   1573-7284 . ПМИД   28220361 . S2CID   4574751 . Архивировано из оригинала 21 июля 2021 года . Проверено 16 февраля 2021 г.
  36. ^ Доминус, Сьюзен (18 октября 2017 г.). «Когда для Эми Кадди пришла революция» . Нью-Йорк Таймс . ISSN   0362-4331 . Архивировано из оригинала 3 января 2020 года . Проверено 2 марта 2019 г.
  37. ^ «Статистический кризис в науке» . Американский учёный . 6 февраля 2017 года. Архивировано из оригинала 13 августа 2021 года . Проверено 18 апреля 2019 г.

Библиография

[ редактировать ]
[ редактировать ]

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 4c58a4cfde0e84fb8a3031c63d5cad5e__1711874640
URL1:https://arc.ask3.ru/arc/aa/4c/5e/4c58a4cfde0e84fb8a3031c63d5cad5e.html
Заголовок, (Title) документа по адресу, URL1:
Causal inference - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)