Матрица Понтекорво–Маки–Накагава–Саката
Аромат в физика элементарных частиц |
---|
вкуса Квантовые числа |
|
Связанные квантовые числа |
|
Комбинации |
|
Смешение вкусов |
В физике элементарных частиц матрица Понтекорво –Маки–Накагавы–Сакаты ( матрица PMNS ), матрица Маки–Накагавы–Сакаты ( матрица MNS ), лептонов матрица смешивания или нейтрино матрица смешивания представляет собой унитарную [а] матрица смешивания , содержащая информацию о несовпадении квантовых состояний нейтрино при их свободном распространении и при участии в слабых взаимодействиях . Это модель нейтринных осцилляций . Эта матрица была представлена в 1962 году Зиро Маки , Масами Накагава и Сёичи Саката . [1] для объяснения нейтринных осцилляций, предсказанных Бруно Понтекорво . [2]
Матрица ПМНС
[ редактировать ]Стандартная модель физики элементарных частиц содержит три поколения или « разновидности » нейтрино: , , и ,каждый из них помечен нижним индексом, указывающим заряженный лептон , с которым он участвует в слабом взаимодействии с заряженным током . Эти три собственных состояния слабого взаимодействия образуют полную ортонормированную основу нейтрино Стандартной модели. Аналогично можно построить собственный базис из трех состояний нейтрино определенной массы: , , и свободной частицы нейтрино , которые диагонализуют гамильтониан . Наблюдениями нейтринных осцилляций экспериментально установлено, что у нейтрино, как и у кварков , эти два собственных основания различны – они «повернуты» относительно друг друга.
Следовательно, каждое собственное состояние аромата можно записать как комбинацию массовых собственных состояний, называемую « суперпозицией », и наоборот. Матрица PMNS с компонентами соответствующий амплитуде собственного состояния массы с точки зрения вкуса « е », « μ », « τ »; параметризует унитарное преобразование между двумя базами:
Вектор слева представляет собой общее нейтрино, выраженное в базисе собственных состояний аромата, а справа — матрица PMNS, умноженная на вектор, представляющий тот же нейтрино в базисе собственных состояний массы. Нейтрино заданного аромата Таким образом, это «смешанное» состояние нейтрино с определенной массой: если бы можно было напрямую измерить массу этого нейтрино, было бы обнаружено, что оно имеет массу с вероятностью .
Матрица PMNS для антинейтрино идентична матрице для нейтрино при симметрии CPT .
Из-за трудностей регистрации нейтрино определить отдельные коэффициенты гораздо сложнее, чем в эквивалентной матрице для кварков ( матрице СКМ ).
Предположения
[ редактировать ]Стандартная модель
[ редактировать ]В Стандартной модели матрица PMNS унитарна . Это означает, что сумма квадратов значений в каждой строке и в каждом столбце, которые представляют вероятности различных возможных событий с учетом одной и той же начальной точки, составляет в сумме 100%.
В простейшем случае Стандартная модель постулирует три поколения нейтрино с массой Дирака, которые колеблются между тремя собственными значениями массы нейтрино, - предположение, которое делается при расчете наиболее подходящих значений ее параметров.
Другие модели
[ редактировать ]В других моделях матрица ПМНС не обязательно унитарна, и необходимы дополнительные параметры для описания всех возможных параметров смешивания нейтрино в других моделях нейтринных осцилляций и генерации массы, таких как модель качелей, и вообще в случае нейтрино. которые имеют массу Майораны, а не массу Дирака .
Существуют также дополнительные массовые параметры и углы смешивания в простом расширении матрицы PMNS, в котором присутствует более трех сортов нейтрино, независимо от характера массы нейтрино. По состоянию на июль 2014 года ученые, изучающие осцилляции нейтрино, активно рассматривают возможность подгонки экспериментальных данных о осцилляциях нейтрино к расширенной матрице PMNS с четвертым, легким «стерильным» нейтрино и четырьмя собственными значениями массы, хотя текущие экспериментальные данные имеют тенденцию исключать такую возможность. [3] [4] [5]
Параметризация
[ редактировать ]В общем, в любой унитарной матрице размером три на три имеется девять степеней свободы. Однако в случае матрицы PMNS пять из этих реальных параметров могут быть поглощены как фазы лептонных полей, и, таким образом, матрица PMNS может быть полностью описана четырьмя свободными параметрами. [6] Матрица PMNS чаще всего параметризуется тремя углами смешивания ( , , и ) и однофазный угол, называемый связанные с нарушениями зарядовой четности (т.е. различия в скоростях колебаний между двумя состояниями с противоположными начальными точками, что делает порядок во времени, в котором происходят события, необходимым для прогнозирования их скоростей колебаний), и в этом случае матрица может быть записана как:
где и используются для обозначения и соответственно. В случае майорановских нейтрино необходимы две дополнительные сложные фазы, поскольку фаза майорановских полей не может быть свободно переопределена из-за условия . Существует бесконечное количество возможных параметризаций; Еще одним распространенным примером является параметризация Wolfenstein .
Углы смешивания были измерены с помощью различных экспериментов ( Смешение нейтрино» описание см. в разделе « ). Фаза нарушения CP не измерялся напрямую, но оценки можно получить путем подбора с использованием других измерений.
Экспериментально измеренные значения параметров
[ редактировать ]По состоянию на ноябрь 2022 года текущие наиболее подходящие значения от NuFIT.org, полученные на основе прямых и косвенных измерений с использованием обычного порядка, составляют: [7]
По состоянию на ноябрь 2022 года 3 диапазона σ (доверительность 99,7%) для величин элементов матрицы составляли: [7]
- Примечания относительно значений параметров наилучшего соответствия
- Эти значения наилучшего соответствия означают, что смешивание нейтрино гораздо больше, чем смешивание между ароматами кварков в матрице CKM (в матрице CKM соответствующие углы смешивания равны 13.04° ± 0.05° , 2.38° ± 0.06° , 0.201° ± 0.011° ).
- Эти значения несовместимы с трибимаксимальным смешением нейтрино (т.е. ) при статистической значимости более пяти стандартных отклонений. Трибимаксимальное смешивание нейтрино было распространенным предположением в статьях по теоретической физике, анализирующих осцилляции нейтрино, до того, как стали доступны более точные измерения.
- Стоимость его очень трудно измерить, и он является объектом постоянных исследований; однако текущее ограничение в районе 180° демонстрирует явный уклон в пользу нарушения зарядовой четности.
См. также
[ редактировать ]Примечания
[ редактировать ]- ^ Однако обратите внимание, что матрица PMNS не является унитарной в модели качелей .
Ссылки
[ редактировать ]- ^ Маки, З.; Накагава, М.; Саката, С. (1962). «Замечания о единой модели элементарных частиц» . Успехи теоретической физики . 28 (5): 870. Бибкод : 1962PThPh..28..870M . дои : 10.1143/PTP.28.870 .
- ^ Понтекорво, Б. (1957). «Обратные бета-процессы и несохранение лептонного заряда». Журнал Экспериментальной и теоретической физики . 34 : 247. воспроизведено и переведено на Понтекорво, Б. (1958). «[название не указано]». Советский физический ЖЭТФ . 7 : 172.
- ^ Кайзер, Борис (13 февраля 2014 г.). «Существуют ли стерильные нейтрино?». Темная Материя . Материалы конференции AIP. 1604 (1): 201–203. arXiv : 1402.3028 . Бибкод : 2014AIPC.1604..201K . CiteSeerX 10.1.1.761.2915 . дои : 10.1063/1.4883431 . S2CID 119182490 .
- ^ Эсмаили, Арман; Кемп, Эрнесто; Перес, ОЛГ; Тебризи, Захра (30 октября 2013 г.). «Исследование легких стерильных нейтрино в экспериментах со средним реактором». Физический обзор D . 88 (7): 073012. arXiv : 1308.6218 . Бибкод : 2013PhRvD..88g3012E . дои : 10.1103/PhysRevD.88.073012 . S2CID 119208413 .
- ^ Ан, ФП; и др. (сотрудничество Daya Bay) (27 июля 2014 г.). «Поиск легкого стерильного нейтрино в заливе Дайя». Письма о физических отзывах . 113 (14): 141802. arXiv : 1407.7259 . Бибкод : 2014PhRvL.113n1802A . doi : 10.1103/PhysRevLett.113.141802 . ПМИД 25325631 . S2CID 10500157 .
- ^ Валле, JWF (2006). «Обзор физики нейтрино». Физический журнал: серия конференций . 53 (1): 473–505. arXiv : hep-ph/0608101 . Бибкод : 2006JPhCS..53..473V . дои : 10.1088/1742-6596/53/1/031 . S2CID 2094005 .
- ^ Jump up to: а б Эстебан, Иван; Гонсалес Гарсия, Конча; Мальтони, Микеле; Швец, Томас; Альберт, Чжоу (ноябрь 2022 г.). «Диапазоны параметров» . NuFIT.org . Подгонка трех нейтрино (NuFIT 5.2 изд.) . Проверено 29 марта 2023 г.
Гонсалес-Гарсия, MC; Мальтони, Микеле; Сальвадо, Хорди; Швец, Томас (21 декабря 2012 г.). «Глобальное соответствие смешиванию трех нейтрино: критический взгляд на нынешнюю точность». Журнал физики высоких энергий . 2012 (12): 123. arXiv : 1209.3023 . Бибкод : 2012JHEP...12..123G . CiteSeerX 10.1.1.762.7366 . дои : 10.1007/JHEP12(2012)123 . S2CID 118566415 .