Jump to content

Угольное разжижение

(Перенаправлено от угля в жидкости )

Угольное разжижение - это процесс превращения угля в жидкие углеводороды: жидкое топливо и нефтехимические вещества . Этот процесс часто известен как «уголь до х» или «углерод до х», где x может быть множеством различных продуктов на основе углеводородов. Тем не менее, наиболее распространенной цепочкой процессов является «уголь для жидкого топлива» (CTL). [ 1 ]

Исторический фон

[ редактировать ]

Угольные разжижения первоначально были разработаны в начале 20 -го века. [ 2 ] Самым известным процессом CTL является синтез Fischer-Tropsch (FT), названный в честь изобретателей Франца Фишера и Ханса Тропша из Института Кайзера Вильгельма в 1920-х годах. [ 3 ] Синтез FT является основой для технологии косвенного угля (ICL). Фридрих Бергиус , также немецкий химик, изобрел прямой угольный разжижение (DCL) как способ преобразования лигнита в синтетическое нефть в 1913 году.

Угольное разжижение было важной частью Адольфа Гитлера четырехлетнего плана 1936 года и стало неотъемлемой частью немецкой промышленности во время Второй мировой войны . [ 4 ] В середине 1930-х годов такие компании, как IG Farben и Ruhrchemie, инициировали промышленное производство синтетического топлива, полученного из угля. Это привело к построению двенадцати растений DCL с использованием гидрирования и девяти растений ICL с использованием синтеза Фишера -Тропша к концу Второй мировой войны. В общей сложности CTL предоставила 92% воздушного топлива в Германии и более 50% своего поставки нефти в 1940 -х годах. [2] The DCL and ICL plants effectively complemented each other rather than competed. The reason for this is that coal hydrogenation yields high quality gasoline for aviation and motors, while FT synthesis chiefly produced high-quality diesel, lubrication oil, and waxes together with some smaller amounts of lower-quality motor gasoline. The DCL plants were also more developed, as lignite – the only coal available in many parts of Germany – worked better with hydrogenation than with FT synthesis. After the war, Germany had to abandon its synthetic fuel production as it was prohibited by the Potsdam conference in 1945.[4]

South Africa developed its own CTL technology in the 1950s. The South African Coal, Oil and Gas Corporation (Sasol) was founded in 1950 as part of industrialization process that the South African government considered essential for continued economic development and autonomy.[5] South Africa had no known domestic oil reserves at the time, and this made the country very vulnerable to disruption of supplies coming from outside, albeit for different reasons at different times. Sasol was a successful way to protect the country's balance of payment against the increasing dependence on foreign oil. For years its principal product was synthetic fuel, and this business enjoyed significant government protection in South Africa during the apartheid years for its contribution to domestic energy security.[6] Although it was generally much more expensive to produce oil from coal than from natural petroleum, the political as well as economic importance of achieving as much independence as possible in this sphere was sufficient to overcome any objections. Early attempts to attract private capital, foreign or domestic, were unsuccessful, and it was only with state support that the coal liquefaction could start. CTL continued to play a vital part in South Africa's national economy, providing around 30% of its domestic fuel demand. The democratization of South Africa in the 1990s made Sasol search for products that could prove more competitive in the global marketplace; as of the new millennium the company was focusing primarily on its petrochemical business, as well as on efforts to convert natural gas into crude oil (GTL) using its expertise in Fischer–Tropsch synthesis.

CTL technologies have steadily improved since the Second World War. Technical development has resulted in a variety of systems capable of handling a wide array of coal types. However, only a few enterprises based on generating liquid fuels from coal have been undertaken, most of them based on ICL technology; the most successful one has been Sasol in South Africa. CTL also received new interest in the early 2000s as a possible mitigation option for reducing oil dependence, at a time when rising oil prices and concerns over peak oil made planners rethink existing supply chains for liquid fuels.

Methods

[edit]

Specific liquefaction technologies generally fall into two categories: direct liquefaction (DCL) and indirect liquefaction (ICL) processes. Direct processes are based on approaches such as carbonization, pyrolysis, and hydrogenation.[7]

Indirect liquefaction processes generally involve gasification of coal to a mixture of carbon monoxide and hydrogen, often known as synthesis gas or simply syngas. Using the Fischer–Tropsch process syngas is converted into liquid hydrocarbons.[8]

In contrast, direct liquefaction processes convert coal into liquids directly without having to rely on intermediate steps by breaking down the organic structure of coal with application of hydrogen-donor solvent, often at high pressures and temperatures.[9] Since liquid hydrocarbons generally have a higher hydrogen-carbon molar ratio than coals, either hydrogenation or carbon-rejection processes must be employed in both ICL and DCL technologies.

At industrial scales (i.e. thousands of barrels/day) a coal liquefaction plant typically requires multibillion-dollar capital investments.[10]

Pyrolysis and carbonization processes

[edit]

A number of carbonization processes exist. The carbonization conversion typically occurs through pyrolysis or destructive distillation. It produces condensable coal tar, oil and water vapor, non-condensable synthetic gas, and a solid residue - char.

One typical example of carbonization is the Karrick process. In this low-temperature carbonization process, coal is heated at 680 °F (360 °C) to 1,380 °F (750 °C) in the absence of air. These temperatures optimize the production of coal tars richer in lighter hydrocarbons than normal coal tar. However, any produced liquids are mostly a by-product and the main product is semi-coke - a solid and smokeless fuel.[2]

The COED Process, developed by FMC Corporation, uses a fluidized bed for processing, in combination with increasing temperature, through four stages of pyrolysis. Heat is transferred by hot gases produced by combustion of part of the produced char. A modification of this process, the COGAS Process, involves the addition of gasification of char.[11] The TOSCOAL Process, an analogue to the TOSCO II oil shale retorting process and Lurgi–Ruhrgas process, which is also used for the shale oil extraction, uses hot recycled solids for the heat transfer.[11]

Liquid yields of pyrolysis and the Karrick process are generally considered too low for practical use for synthetic liquid fuel production.[12] The resulting coal tars and oils from pyrolysis generally require further treatment before they can be usable as motor fuels; they are processed by hydrotreating to remove sulfur and nitrogen species, after which they are finally processed into liquid fuels.[11]

In summary, the economic viability of this technology is questionable.[10]

Hydrogenation processes

[edit]
Friedrich Bergius

One of the main methods of direct conversion of coal to liquids by hydrogenation process is the Bergius process, developed by Friedrich Bergius in 1913. In this process, dry coal is mixed with heavy oil recycled from the process. A catalyst is typically added to the mixture. The reaction occurs at between 400 °C (752 °F) to 500 °C (932 °F) and 20 to 70 MPa hydrogen pressure. The reaction can be summarized as follows:[7]

After World War I several plants based on this technology were built in Germany; these plants were extensively used during World War II to supply Germany with fuel and lubricants.[13] The Kohleoel Process, developed in Germany by Ruhrkohle and VEBA, was used in the demonstration plant with the capacity of 200 ton of lignite per day, built in Bottrop, Germany. This plant operated from 1981 to 1987. In this process, coal is mixed with a recycle solvent and iron catalyst. After preheating and pressurizing, H2 is added. The process takes place in a tubular reactor at the pressure of 300 bar (30 MPa) and at the temperature of 470 °C (880 °F).[14] This process was also explored by SASOL in South Africa.

During the 1970s and 1980s, Japanese companies Nippon Kokan, Sumitomo Metal Industries, and Mitsubishi Heavy Industries developed the NEDOL process. In this process, coal is mixed with a recycled solvent and a synthetic iron-based catalyst; after preheating, H2 is added. The reaction takes place in a tubular reactor at a temperature between 430 °C (810 °F) and 465 °C (870 °F) at the pressure 150-200 bar. The produced oil has low quality and requires intensive upgrading.[14] H-Coal process, developed by Hydrocarbon Research, Inc., in 1963, mixes pulverized coal with recycled liquids, hydrogen and catalyst in the ebullated bed reactor. Advantages of this process are that dissolution and oil upgrading are taking place in the single reactor, products have high H/C ratio, and a fast reaction time, while the main disadvantages are high gas yield (this is basically a thermal cracking process), high hydrogen consumption, and limitation of oil usage only as a boiler oil because of impurities.[11]

The SRC-I and SRC-II (Solvent Refined Coal) processes were developed by Gulf Oil and implemented as pilot plants in the United States in the 1960s and 1970s.[14]

The Nuclear Utility Services Corporation developed hydrogenation process which was patented by Wilburn C. Schroeder in 1976. The process involved dried, pulverized coal mixed with roughly 1wt% molybdenum catalysts.[7] Hydrogenation occurred by use of high temperature and pressure synthesis gas produced in a separate gasifier. The process ultimately yielded a synthetic crude product, naphtha, a limited amount of C3/C4 gas, light-medium weight liquids (C5-C10) suitable for use as fuels, small amounts of NH3 and significant amounts of CO2.[15] Other single-stage hydrogenation processes are the Exxon Donor Solvent Process, the Imhausen High-pressure Process, and the Conoco Zinc Chloride Process.[14]

There are also a number of two-stage direct liquefaction processes; however, after the 1980s only the Catalytic Two-stage Liquefaction Process, modified from the H-Coal Process; the Liquid Solvent Extraction Process by British Coal; and the Brown Coal Liquefaction Process of Japan have been developed.[14]

Shenhua, a Chinese coal mining company, decided in 2002 to build a direct liquefaction plant in Erdos, Inner Mongolia (Erdos CTL), with barrel capacity of 20 thousand barrels per day (3.2×10^3 m3/d) of liquid products including diesel oil, liquefied petroleum gas (LPG) and naphtha (petroleum ether). First tests were implemented at the end of 2008. A second and longer test campaign was started in October 2009. In 2011, Shenhua Group reported that the direct liquefaction plant had been in continuous and stable operations since November 2010, and that Shenhua had made 800 million yuan ($125.1 million) in earnings before taxes in the first six months of 2011 on the project.[16]

Chevron Corporation developed a process invented by Joel W. Rosenthal called the Chevron Coal Liquefaction Process (CCLP).[17] It is unique due to the close-coupling of the non-catalytic dissolver and the catalytic hydroprocessing unit. The oil produced had properties that were unique when compared to other coal oils; it was lighter and had far fewer heteroatom impurities. The process was scaled-up to the 6 ton per day level, but not proven commercially.

Indirect conversion processes

[edit]

Indirect coal liquefaction (ICL) processes operate in two stages. In the first stage, coal is converted into syngas (a purified mixture of CO and H2 gas). In the second stage, the syngas is converted into light hydrocarbons using one of three main processes: Fischer–Tropsch synthesis, methanol synthesis with subsequent conversion to gasoline or petrochemicals, and methanation. Fischer–Tropsch is the oldest of the ICL processes.

In methanol synthesis processes syngas is converted to methanol, which is subsequently polymerized into alkanes over a zeolite catalyst. This process, under the moniker MTG (MTG for "Methanol To Gasoline"), was developed by Mobil in the early 1970s, and is being tested at a demonstration plant by Jincheng Anthracite Mining Group (JAMG) in Shanxi, China. Based on this methanol synthesis, China has also developed a strong coal-to-chemicals industry, with outputs such as olefins, MEG, DME and aromatics.

Methanation reaction converts syngas to substitute natural gas (SNG). The Great Plains Gasification Plant in Beulah, North Dakota is a coal-to-SNG facility producing 160 million cubic feet per day of SNG, and has been in operation since 1984.[18] Several coal-to-SNG plants are in operation or in project in China, South Korea and India.

In another application of gasification, hydrogen extracted from synthetic gas reacts with nitrogen to form ammonia. Ammonia then reacts with carbon dioxide to produce urea.[19]

The above instances of commercial plants based on indirect coal liquefaction processes, as well as many others not listed here including those in planning stages and under construction, are tabulated in the Gasification Technologies Council's World Gasification Database.[20]

Environmental considerations

[edit]

Typically coal liquefaction processes are associated with significant CO2 emissions from the gasification process or as well as from generation of necessary process heat and electricity inputs to the liquefaction reactors,[10] thus releasing greenhouse gases that can contribute to anthropogenic global warming. This is especially true if coal liquefaction is conducted without any carbon capture and storage technologies.[21] There are technically feasible low-emission configurations of CTL plants.[22]

High water consumption in the water-gas shift reaction or steam methane reforming is another adverse environmental effect.[10]

CO2 emission control at Erdos CTL, an Inner Mongolian plant with a carbon capture and storage demonstration project, involves injecting CO2 into the saline aquifer of Erdos Basin, at a rate of 100,000 tonnes per year.[23][third-party source needed] As of late October 2013, an accumulated amount of 154,000 tonnes of CO2 had been injected since 2010, which reached or exceeded the design value.[24][third-party source needed]

In the United States, the Renewable Fuel Standard and low-carbon fuel standard, such as enacted in the State of California, reflect an increasing demand for low carbon footprint fuels. Also, legislation in the United States has restricted the military's use of alternative liquid fuels to only those demonstrated to have life-cycle GHG emissions less than or equal to those of their conventional petroleum-based equivalent, as required by Section 526 of the Energy Independence and Security Act (EISA) of 2007.[25]

Research and development of coal liquefaction

[edit]

The United States military has an active program to promote alternative fuels use,[26] and utilizing vast domestic U.S. coal reserves to produce fuels through coal liquefaction would have obvious economic and security advantages. But with their higher carbon footprint, fuels from coal liquefaction face the significant challenge of reducing life-cycle GHG emissions to competitive levels, which demands continued research and development of liquefaction technology to increase efficiency and reduce emissions. A number of avenues of research & development will need to be pursued, including:

  • Carbon capture and storage including enhanced oil recovery and developmental CCS methods to offset emissions from both synthesis and utilization of liquid fuels from coal,
  • Coal/biomass/natural gas feedstock blends for coal liquefaction: Utilizing carbon-neutral biomass and hydrogen-rich natural gas as co-feeds in coal liquefaction processes has significant potential for bringing fuel products' life-cycle GHG emissions into competitive ranges,
  • Hydrogen from renewables: the hydrogen demand of coal liquefaction processes might be supplied through renewable energy sources including wind, solar, and biomass, significantly reducing the emissions associated with traditional methods of hydrogen synthesis (such as steam methane reforming or char gasification), and
  • Process improvements such as intensification of the Fischer–Tropsch process, hybrid liquefaction processes, and more efficient air separation technologies needed for production of oxygen (e.g. ceramic membrane-based oxygen separation).

Since 2014, the U.S. Department of Energy and the Department of Defense have been collaborating on supporting new research and development in the area of coal liquefaction to produce military-specification liquid fuels, with an emphasis on jet fuel, which would be both cost-effective and in accordance with EISA Section 526.[27] Projects underway in this area are described under the U.S. Department of Energy National Energy Technology Laboratory's Advanced Fuels Synthesis R&D area in the Coal and Coal-Biomass to Liquids Program.

Every year, a researcher or developer in coal conversion is rewarded by the industry in receiving the World Carbon To X Award. The 2016 Award recipient is Mr. Jona Pillay, executive director for Gasification & CTL, Jindal Steel & Power Ltd (India). The 2017 Award recipient is Dr. Yao Min, Deputy General Manager of Shenhua Ningxia Coal Group (China).[28]

In terms of commercial development, coal conversion is experiencing a strong acceleration.[29] Geographically, most active projects and recently commissioned operations are located in Asia, mainly in China, while U.S. projects have been delayed or canceled due to the development of shale gas and shale oil.

Coal liquefaction plants and projects

[edit]

World (Non-U.S.) Coal to Liquid Fuels Projects

[edit]
World (Non-U.S.) Coal to Liquid Fuels Projects[20][30]
Project Developer Locations Type Products Start of Operations
Sasol Synfuels II (West) & Sasol Synfuels III (East) Sasol (Pty) Ltd. Secunda, South Africa CTL 160,000 BPD; primary products gasoline and light olefins (alkenes) 1977(II)/1983(III)
Shenhua Direct Coal Liquefaction Plant Shenhua Group Erdos, Inner Mongolia, China CTL (direct liquefaction) 20,000 BPD; primary products diesel fuel, liquefied petroleum gas, naphtha 2008
Yitai CTL Plant Yitai Coal Oil Manufacturing Co., Ltd. Ordos, Zhungeer, China CTL 160,000 mt/a Fischer–Tropsch liquids 2009
Jincheng MTG Plant Jincheng Anthracite Mining Co., Ltd. Jincheng, China CTL 300,000 t/a methanol from MTG process 2009
Sasol Synfuels Sasol (Pty) Ltd. Secunda, South Africa CTL 3,960,000 (Nm3/d) syngas capacity; Fischer–Tropsch liquids 2011
Shanxi Lu'an CTL Plant Shanxi Lu'an Co. Ltd. Lu'an, China CTL 160,000 mt/a Fischer–Tropsch liquids 2014
ICM Coal to Liquids Plant Industrial Corporation of Mongolia LLC (ICM) Tugrug Nuur, Mongolia CTL 13,200,000 (Nm3/d) syngas capacity; gasoline 2015
Yitai Yili CTL Plant Yitai Yili Energy Co. Yili, China CTL 30,000 BPD Fischer–Tropsch liquids 2015
Yitai Ordos CTL Plant Phase II Yitai Ordos, Zhungeer-Dalu, China CTL 46,000 BPD Fischer–Tropsch liquids 2016
Yitai Ürümqi CTL Plant Yitai Guanquanbao, Urunqi, China CTL 46,000 BPD Fischer–Tropsch liquids 2016
Shenhua Ningxia CTL Project Shenhua Group Corporation Ltd China, Yinchuan, Ningxia CTL 4 million tonnes/year of diesel & naphtha 2016
Clean Carbon Industries Clean Carbon Industries Mozambique, Tete province Coal waste-to-liquids 65,000 BPD fuel 2020
Arckaringa Project Altona Energy Australia, South CTL 30,000 BPD Phase I 45,000 BPD + 840 MW Phase II TBD

U.S. Coal to Liquid Fuels Projects

[edit]
U.S. Coal to Liquid Fuels Projects[20][31]
Project Developer Locations Type Products Status
Adams Fork Energy - TransGas WV CTL TransGas Development Systems (TGDS) Mingo County, West Virginia CTL 7,500 TPD of coal to 18,000 BPD gasoline and 300 BPD LPG Operations 2016 or later
American Lignite Energy (aka Coal Creek Project) American Lignite Energy LLC (North American Coal, Headwaters Energy Services) MacLean County, North Dakota CTL 11.5 million TPY lignite coal to 32,000 BPD of undefined fuel Delayed/Cancelled
Belwood Coal-to-Liquids Project (Natchez) Rentech Natchez, Mississippi CTL Petcoke to up to 30,000 BPD ultra-clean diesel Delayed/Cancelled
CleanTech Energy Project USA Synthetic Fuel Corp. (USASF) Wyoming Synthetic crude 30.6 mm bbls/year of synthetic crude (or 182 billion cubic feet per year) Planning/financing not secured
Cook Inlet Coal-to Liquids Project (aka Beluga CTL) AIDEA and Alaska Natural Resources to Liquids Cook Inlet, Alaska CTL 16 million TPY coal to 80,000 BPD of diesel and naphtha; CO2 for EOR; 380 MW electrical generation Delayed/Cancelled
Decatur Gasification Plant Secure Energy Decatur, Illinois CTL 1.5 million TPY of high-sulfur IL coal generating 10,200 barrels per day of high quality gasoline Delayed/Cancelled
East Dubuque Plant Rentech Energy Midwest Corporation (REMC) East Dubuque, Illinois CTL, polygeneration 1,000 tpd ammonia; 2,000 BPD clean fuels and chemicals Delayed/Cancelled
FEDC Healy CTL Fairbanks Economic Development Corp. (FEDC) Fairbanks, Alaska CTL/GTL 4.2-11.4 million TPY Healy-mined coal; ~40k BPD liquid fuels; 110MW Planning
Freedom Energy Diesel CTL Freedom Energy Diesel LLC Morristown, Tennessee GTL Undetermined Delayed/Cancelled
Future Fuels Kentucky CTL Future Fuels, Kentucky River Properties Perry County, Kentucky CTL Not specified. Coal to methanol and other chemicals (over 100 million tons of coal supply) Active
Hunton "Green Refinery" CTL Hunton Energy Freeport, Texas CTL Bitumen crude oil to 340,000 BPD jet and diesel fuel Delayed/Cancelled
Illinois Clean Fuels Project American Clean Coal Fuels Coles County, Illinois CTL 4.3 million TPY coal/biomass to 400 million GPY diesel and jet fuel Delayed/Cancelled
Lima Energy Project USA Synthetic Fuel Corp. (USASF) Lima, Ohio IGCC/SNG/H2, polygeneration Three Phases: 1) 2.7 million barrels of oil equivalent (BOE), 2) expand to 5.3 million BOE (3) expand to 8.0 million BOE (47 billion cf/y), 516 MW Active
Many Stars CTL Australian-American Energy Co. (Terra Nova Minerals or Great Western Energy), Crow Nation Big Horn County, Montana CTL First phase: 8,000 BPD liquids Active (no new information since 2011)
Medicine Bow Fuel and Power Project DKRW Advanced Fuels Carbon County, Wyoming CTL 3 million TPY coal to 11,700 BPD of gasoline Delayed/Cancelled
NABFG Weirton CTL North American Biofuels Group Weirton, West Virginia CTL Undetermined Delayed/Cancelled
Rentech Energy Midwest Facility Rentech Energy Midwest Corporation (REMC) East Dubuque, Illinois CTL 1,250 BPD diesel Delayed/Cancelled
Rentech/Peabody Joint Development Agreement (JDA) Rentech/Peabody Coal Kentucky CTL 10,000 and 30,000 BPD Delayed/Cancelled
Rentech/Peabody Minemouth Rentech/Peabody Coal Montana CTL 10,000 and 30,000 BPD Delayed/Cancelled
Secure Energy CTL (aka MidAmericaC2L MidAmericaC2L / Siemens McCracken County, Kentucky CTL 10,200 BPD gasoline Active (no new information since 2011)
Tyonek Coal-to-Liquids (formerly Alaska Accelergy CTL Project) Accelergy, Tyonek Native Corporation (TNC) Cook Inlet, Alaska CBTL Undefined amount of coal/biomass to 60,000 BPD jet fuel/gasoline/diesel and 200-400 MW electricity Planning
US Fuel CTL US Fuel Corporation Perry County/Muhlenberg County, Kentucky CTL 300 tons of coal into 525 BPD liquid fuels including diesel and jet fuel Active

See also

[edit]

References

[edit]
  1. ^ Takao Kaneko, Frank Derbyshire, Eiichiro Makino, David Gray, Masaaki Tamura, Kejian Li (2012). "Coal Liquefaction". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a07_197.pub2. ISBN 978-3527306732.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link)
  2. ^ Jump up to: a b c Höök, Mikael; Aleklett, Kjell (2010). "A review on coal to liquid fuels and its coal consumption". International Journal of Energy Research. 34 (10): 848–864. doi:10.1002/er.1596. S2CID 52037679.
  3. ^ Davis, B.H.; Occelli, M.L. (2006). Fischer–Tropsch Synthesis. Elsevier. ISBN 9780080466750.
  4. ^ Jump up to: a b Stranges, A.N. (2000). Lesch, John E (ed.). Germany's synthetic fuel industry, 1927–1945. Dordrecht: Springer. pp. 147–216. doi:10.1007/978-94-015-9377-9. ISBN 978-94-015-9377-9.
  5. ^ Sasol. "Historical Milestones". Sasol Company Profile. Sasol. Retrieved 2017-10-05.
  6. ^ Spalding-Fecher, R.; Уильямс, А.; Ван Хорен, С. (2000). «Энергия и окружающая среда в Южной Африке: наметить курс для устойчивости». Энергия для устойчивого развития . 4 (4): 8–17. doi : 10.1016/s0973-0826 (08) 60259-8 .
  7. ^ Jump up to: а беременный в Speight, James G. (2008). Справочник по синтетическому топливу: свойства, процесс и производительность . McGraw-Hill Professional . С. 9–10. ISBN  978-0-07-149023-8 Полем Получено 2009-06-03 .
  8. ^ «Косвенные процессы разжижения» . Национальная лаборатория энергетических технологий. Архивировано из оригинала 25 мая 2014 года . Получено 24 июня 2014 года .
  9. ^ «Прямые процессы разжижения» . Национальная лаборатория энергетических технологий. Архивировано из оригинала 24 мая 2014 года . Получено 24 июня 2014 года .
  10. ^ Jump up to: а беременный в дюймовый Хёёк, Микаэль; Fantazzini, Дин; Анжелтонни, Андре; Сноуден, Саймон (2013). «Углеводородный разжижение: жизнеспособность как пиковая стратегия смягчения нефти» . Философские транзакции Королевского общества а . 372 (2006): 20120319. Bibcode : 2013rspta.37220319H . doi : 10.1098/rsta.2012.0319 . PMID   24298075 . Получено 2009-06-03 .
  11. ^ Jump up to: а беременный в дюймовый Lee, Sunggyu (1996). Альтернативные топлива . CRC Press . С. 166–198. ISBN  978-1-56032-361-7 Полем Получено 2009-06-27 .
  12. ^ Ekinci, E.; Yardim, Y.; Razvigorova, M.; Минкова, В.; Горанова, М.; Петров, Н.; Будинова Т. (2002). «Характеристика жидких продуктов из пиролиза суббитумного угля». Технология обработки топлива . 77–78: 309–315. doi : 10.1016/s0378-3820 (02) 00056-5 .
  13. ^ Странты, Энтони Н. (1984). «Фридрих Бергиус и рост немецкой синтетической топливной промышленности». ИГИЛ . 75 (4): 643–667. doi : 10.1086/353647 . JSTOR   232411 . S2CID   143962648 .
  14. ^ Jump up to: а беременный в дюймовый и Пилотная установка SRC-I, работающая в Форт-Льюис, в 1970-х годах, но не смогла преодолеть отсутствие проблем с балансом растворителя (необходим постоянный импорт растворителя, содержащего полинуклеарные ароматики). Демонстрационный завод SRC-I должен был быть построен в Ньюмане, штат Кентукки, но был отменен в 1981 году. На основании работы Бергиуса в 1913 году было отмечено, что определенные минералы в угольной пепе Демонстрационная установка SRC-II, которая будет построена в Моргантауне, штат Вашингтон. Это также было отменено в 1981 году. Он появился на основе работы, выполненной до сих пор, чтобы быть желательными для разделения функций угля и каталитического гидродизации, чтобы получить больший выход синтетической сырой нефти; Это было достигнуто на небольшой пилотной завод, в Уилсонвилле, штат Алабама, в 1981-85 годах. Завод также включал в себя дизаш критического радестара, чтобы восстановить максимальное количество полезного жидкого продукта. На коммерческом заводе неразрыв, содержащий непрозрачный углеродный вещество, будет газифицирован для обеспечения водорода для управления процессом. Эта программа закончилась в 1985 году, и завод был отменен. Программа по угнутой технологии Cheeer (октябрь 1999 г.). «Отчет о статусе технологий 010: угольное разжижение» (PDF) . Департамент торговли и промышленности . Архивировано из оригинала (PDF) на 2009-06-09 . Получено 2010-10-23 . {{cite journal}}: CITE Journal требует |journal= ( помощь )
  15. ^ Лоу, Филипп А.; Schroeder, Wilburn C.; Liccardi, Enthony L. (1976). «Техническая экономика, симпозиум синфуэля и энергии угля, твердофазный каталитический угольный процесс разжижения угля». Американское общество инженеров -механиков : 35. {{cite journal}}: CITE Journal требует |journal= ( помощь )
  16. ^ «Китай Шенхуа Проект по угольщикам-жидкостям прибыль» . Американская коалиция топлива. 8 сентября 2011 г. Получено 24 июня 2014 года .
  17. ^ Rosenthal, et al., 1982. Процесс разжижения Chevron Coal (CCLP). Топливо 61 (10): 1045-1050.
  18. ^ «Грейт -равнины синфуэл растения» . Национальная лаборатория энергетических технологий . Получено 24 июня 2014 года .
  19. ^ «Углерод до x процессы» (PDF) . Мировой углерод до х . Получено 27 ноября 2020 года .
  20. ^ Jump up to: а беременный в «Газификационные технологии Совета по цене ресурсов Всемирной базы данных газификации» . Получено 24 июня 2014 года .
  21. ^ Тарка, Томас Дж.; Вимер, Джон Г.; Балаш, Питер С.; Сконе, Тимоти Дж.; Керн, Кеннет С.; Варгас, Мария С.; Морреал, Брайан Д.; White III, Charles W.; Грей, Дэвид (2009). «Доступный низкоуглеродистый дизель от внутреннего угля и биомассы» (PDF) . Министерство энергетики США , Национальная лаборатория энергетических технологий : 21. Архивировано из оригинала (PDF) 2013-02-20 . Получено 2016-05-10 . {{cite journal}}: CITE Journal требует |journal= ( помощь )
  22. ^ Мантрипрагада, H.; Рубин, Э. (2011). «Техно-экономическая оценка растений угля к жидкости (CTL) с улавливанием углерода и секвестрации». Энергетическая политика . 39 (5): 2808–2816. doi : 10.1016/j.enpol.2011.02.053 .
  23. ^ «Прогресс демонстрационного проекта CCS в группе Shenhua» (PDF) . Китай Шенхуа уголь для жидкой и химической инженерной компании. 9 июля 2012 г. Получено 24 июня 2014 года .
  24. ^ У Xiuzhang (7 января 2014 г.). «Демонстрация углерода и хранения Shenhua Group» . Cornerstone Magazine . Получено 24 июня 2014 года .
  25. ^ "Pub.L. 110-140" (PDF) .
  26. ^ Т., Бартис, Джеймс; Лоуренс, Ван Биббер (2011-01-01). «Альтернативные виды топлива для военных применений» . {{cite journal}}: CITE Journal требует |journal= ( Справка ) CS1 Maint: несколько имен: список авторов ( ссылка )
  27. ^ «Исследования и разработки выбросов парниковых газов, приводящие к конкурентоспособным затратам на основе угля и жидкостей (CTL) . 31 января 2014 года . Получено 30 июня 2014 года .
  28. ^ Домашняя страница углерода
  29. ^ Перино Перино Преобразование угля в углеводороды с более высокой стоимостью: осязаемое ускорение , журнал Cornerstone , 11 октября 2013 года.
  30. ^ «World (не US) предложенная база данных завода газификации» . Национальная лаборатория энергетических технологий. Июнь 2014 года . Получено 30 июня 2014 года .
  31. ^ «Предложенная США база данных завода газификации» . Национальная лаборатория энергетических технологий. Июнь 2014 года . Получено 30 июня 2014 года .
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 344ba1b55f7f5deb8c92cbddb8153b25__1715099160
URL1:https://arc.ask3.ru/arc/aa/34/25/344ba1b55f7f5deb8c92cbddb8153b25.html
Заголовок, (Title) документа по адресу, URL1:
Coal liquefaction - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)