Отражательная способность рентгеновских лучей
Отражательная способность рентгеновских лучей (иногда известная как зеркальная отражательная способность рентгеновских лучей , рентгеновская рефлектометрия или XRR ) — это поверхностно-чувствительный аналитический метод, используемый в химии , физике и материаловедении для характеристики поверхностей , тонких пленок и многослойных материалов . [1] [2] [3] [4] Это форма рефлектометрии, основанная на использовании рентгеновских лучей и связанная с методами нейтронной рефлектометрии и эллипсометрии .
Основной принцип отражательной способности рентгеновских лучей заключается в отражении пучка рентгеновских лучей от плоской поверхности и последующем измерении интенсивности рентгеновских лучей, отраженных в зеркальном направлении (угол отражения равен углу падения). Если граница раздела не является идеально четкой и гладкой, то интенсивность отраженного света будет отклоняться от той, которая предсказывается законом отражательной способности Френеля . Затем отклонения можно проанализировать, чтобы получить профиль плотности границы раздела нормали к поверхности.
История
[ редактировать ]Похоже, что этот метод впервые был применен к рентгеновским лучам Лайманом Г. Парраттом в 1954 году. [5] Первоначальная работа Парратта исследовала поверхность стекла с медным покрытием, но с тех пор этот метод был распространен на широкий спектр границ раздела как с твердыми телами, так и с жидкостью.
Приближение
[ редактировать ]Когда граница раздела не является идеально острой, но имеет профиль средней электронной плотности, определяемый выражением , то коэффициент отражения рентгеновских лучей можно аппроксимировать следующим образом: [2] : 83
Здесь это отражательная способность, , длина волны рентгеновского излучения (обычно пик K-альфа меди при 0,154056 нм), плотность в глубине материала и это угол падения. Ниже критического угла (получено из закона Снеллиуса ), 100% падающего излучения отражается за счет полного внешнего отражения , . Для , . Обычно эту формулу можно затем использовать для сравнения параметризованных моделей профиля средней плотности в направлении z с измеренной отражательной способностью рентгеновских лучей, а затем изменять параметры до тех пор, пока теоретический профиль не будет соответствовать измерению.
Колебания
[ редактировать ]Для пленок с несколькими слоями отражательная способность рентгеновских лучей может демонстрировать колебания с Q (угол/длина волны), аналогичные эффекту Фабри-Перо , называемому здесь полосами Киссига . [6] Период этих колебаний можно использовать для определения толщины слоев, межслоевых шероховатостей, плотности электронов и их контрастов , а также комплексных показателей преломления (которые зависят от атомного номера и атомного форм-фактора ), например, используя формализм матрицы Абелеса или рекурсивный метод Парратта. формализм следующим образом:
где X j — соотношение отраженных и переданных амплитуд между слоями j и j+1, d j — толщина слоя j, а r j,j+1 — коэффициент Френеля для слоев j и j+1.
где k j,z — z-компонент волнового числа . Для зеркального отражения, когда углы падения и отражения равны, использованное ранее значение Q равно двукратному k z, потому что . При условиях R N+1 = 0 и T 1 = 1 для системы N-интерфейса (т.е. ничего не возвращается изнутри полубесконечной подложки и падающей волны единичной амплитуды) все X j могут быть вычислены последовательно. Шероховатость также можно учесть, добавив коэффициент
где — стандартное отклонение (также известное как шероховатость).
Толщина тонкой пленки и критический угол также могут быть аппроксимированы с помощью линейной аппроксимации квадрата угла падения пиков. в рад 2 против безразмерного квадрата пикового числа следующее:
- .
Подгонка кривой
[ редактировать ]Измерения отражательной способности рентгеновских лучей анализируются путем подгонки к измеренным данным смоделированной кривой, рассчитанной с использованием рекурсивного формализма Парратта в сочетании с формулой грубого интерфейса. Параметрами подгонки обычно являются толщины слоев и плотности (от которых зависит показатель преломления и, в конечном итоге, компонент волнового вектора z рассчитывается) и шероховатости поверхности. Измерения обычно нормализуются так, чтобы максимальная отражательная способность была равна 1, но при подгонке также можно включить коэффициент нормализации. Дополнительными параметрами подгонки могут быть уровень фонового излучения и ограниченный размер образца, из-за чего след луча под малыми углами может превышать размер образца, что снижает отражательную способность.
Для определения отражательной способности рентгеновских лучей было опробовано несколько алгоритмов подбора, некоторые из которых находят локальный оптимум вместо глобального оптимума. Метод Левенберга-Марквардта находит локальный оптимум. Из-за того, что кривая имеет много интерференционных полос, она определяет неправильную толщину слоя, если только первоначальное предположение не является чрезвычайно точным. -метод без производных Симплекс также находит локальный оптимум. Чтобы найти глобальный оптимум, необходимы алгоритмы глобальной оптимизации, такие как имитация отжига. К сожалению, имитацию отжига сложно распараллелить на современных многоядерных компьютерах. Можно показать , что при наличии достаточного количества времени моделируемый отжиг находит глобальный оптимум с вероятностью, приближающейся к 1, [7] но такое доказательство сходимости не означает, что требуемое время достаточно мало. В 1998 году [8] Было обнаружено, что генетические алгоритмы являются надежными и быстрыми методами определения отражательной способности рентгеновских лучей. Таким образом, генетические алгоритмы были внедрены в программное обеспечение практически всех производителей рентгеновских дифрактометров, а также в программное обеспечение с открытым исходным кодом.
Для аппроксимации кривой требуется функция, обычно называемая функцией приспособленности, функцией стоимости, функцией ошибки аппроксимации или показателем качества (FOM). Он измеряет разницу между измеренной кривой и моделируемой кривой, поэтому чем меньше значение, тем лучше. При подгонке измерения и наилучшее моделирование обычно представляются в логарифмическом пространстве.
С математической точки зрения, Функция ошибки аппроксимации учитывает эффекты пуассоновского шума подсчета фотонов математически корректным способом:
- .
Однако это Функция может придавать слишком большой вес областям высокой интенсивности. Если важны области высокой интенсивности (например, при определении плотности массы под критическим углом), это может не быть проблемой, но подгонка может визуально не соответствовать измерениям в диапазонах низкой интенсивности под большим углом.
Другая популярная функция ошибки аппроксимации — это функция 2-нормы в логарифмическом пространстве. Это определяется следующим образом:
- .
Излишне говорить, что в уравнении необходимо удалить точки данных с нулевым измеренным количеством фотонов. Эту 2-норму в логарифмическом пространстве можно обобщить до p-нормы в логарифмическом пространстве. Недостаток этой 2-нормы в логарифмическом пространстве состоит в том, что она может придавать слишком большой вес областям, где относительный шум подсчета фотонов высок.
Программное обеспечение с открытым исходным кодом
[ редактировать ]Производители дифрактометров обычно предоставляют коммерческое программное обеспечение для измерения отражательной способности рентгеновских лучей. Однако также доступно несколько пакетов программного обеспечения с открытым исходным кодом: GenX [9] [10] — это широко используемое программное обеспечение с открытым исходным кодом для подбора кривой отражения рентгеновских лучей. Он реализован на языке программирования Python и поэтому работает как в Windows, так и в Linux. Мотофит [11] [12] работает в среде IGOR Pro и, следовательно, не может использоваться в операционных системах с открытым исходным кодом, таких как Linux. Микронова XRR [13] работает под управлением Java и поэтому доступен в любой операционной системе, в которой доступен Java.Рефлекс [14] [15] представляет собой автономное программное обеспечение, предназначенное для моделирования и анализа отражения рентгеновских лучей и нейтронов от многослойных слоев. REFLEX — это удобная бесплатная программа, работающая на платформах Windows, Mac и Linux.
Ссылки
[ редактировать ]- ^ Голый, В.; Кубена, Ю.; Олидал, И.; Лишка, К.; Плотц, В. (15 июня 1993 г.). «Отражение рентгеновских лучей от грубых слоистых систем». Физический обзор B . 47 (23). Американское физическое общество (APS): 15896–15903. Бибкод : 1993PhRvB..4715896H . дои : 10.1103/physrevb.47.15896 . ISSN 0163-1829 . ПМИД 10005989 .
- ^ Перейти обратно: а б Дж. Альс-Нильсен, Д. МакМорроу, Элементы современной рентгеновской физики , Уайли, Нью-Йорк (2001).
- ^ Ж. Дайлант, А. Жибо, Отражательная способность рентгеновских лучей и нейтронов: принципы и приложения . Спрингер, (1999).
- ^ М. Толан, Рассеяние рентгеновских лучей тонкими пленками из мягкого материала , Springer, (1999).
- ^ Парратт, Л.Г. (15 июля 1954 г.). «Исследование поверхности твердых тел методом полного отражения рентгеновских лучей». Физический обзор . 95 (2). Американское физическое общество (APS): 359–369. Бибкод : 1954PhRv...95..359P . дои : 10.1103/physrev.95.359 . ISSN 0031-899X .
- ^ Киссиг, Хайнц (1931). «Исследования полного отражения рентгеновских лучей». Анналы физики (на немецком языке). 402 (6). Уайли: 715-768. Бибкод : 1931АнП...402..715К . дои : 10.1002/andp.19314020607 . ISSN 0003-3804 .
- ^ Гранвиль, В.; Криванек, М.; Рассон, Ж.-П. (1994). «Имитация отжига: доказательство сходимости». Транзакции IEEE по анализу шаблонов и машинному интеллекту . 16 (6). Институт инженеров по электротехнике и электронике (IEEE): 652–656. дои : 10.1109/34.295910 . ISSN 0162-8828 .
- ^ Дейн, AD; Вельдхейс, А.; Бур, ДКГде; Линэрс, AJG; Байденс, LMC (1998). «Применение генетических алгоритмов для характеристики тонкослоистых материалов методом рентгеновской рефлектометрии скользящего падения». Физика Б: Конденсированное вещество . 253 (3–4). Эльзевир Б.В.: 254–268. Бибкод : 1998PhyB..253..254D . дои : 10.1016/s0921-4526(98)00398-6 . ISSN 0921-4526 .
- ^ Бьорк, Мэттс. «GenX — Дом» . genx.sourceforge.net .
- ^ Бьорк, Мэттс; Андерссон, Габриэлла (10 ноября 2007 г.). «GenX: расширяемая программа улучшения отражательной способности рентгеновских лучей, использующая дифференциальную эволюцию». Журнал прикладной кристаллографии . 40 (6). Международный союз кристаллографии (IUCr): 1174–1178. дои : 10.1107/s0021889807045086 . ISSN 0021-8898 .
- ^ «Главная страница — Мотофит» . motofit.sourceforge.net .
- ^ Нельсон, Эндрю (12 марта 2006 г.). «Совместное уточнение данных многоконтрастной нейтронной и рентгеновской отражательной способности с использованием MOTOFIT». Журнал прикладной кристаллографии . 39 (2). Международный союз кристаллографии (IUCr): 273–276. дои : 10.1107/s0021889806005073 . ISSN 0021-8898 .
- ^ "jmtilli/micronovaxrr" . Гитхаб . 25 июля 2017 г.
- ^ Виньо, Гийом; Жибо, Ален (01 февраля 2019 г.). «РЕФЛЕКС: программа для анализа данных зеркального рентгеновского и нейтронного отражения». Журнал прикладной кристаллографии . 52 (1). Международный союз кристаллографии (IUCr): 201–213. дои : 10.1107/s1600576718018186 . ISSN 1600-5767 . S2CID 104467965 .
- ^ «Главная страница - Рефлекс» . reflex.irdl.fr/Reflex/reflex.html .