ЛЕДЯНОЙ ФЕТ
Ионно -чувствительный полевой транзистор ( ISFET ) — полевой транзистор, используемый для измерения концентрации ионов в растворе; когда концентрация ионов (например, H + , см. шкалу pH ток через транзистор ) изменится, соответственно изменится и . Здесь раствор используется в качестве электрода затвора. Напряжение между подложкой и поверхностями оксида возникает за счет ионной оболочки. Это особый тип MOSFET (полевой транзистор металл-оксид-полупроводник). [1] и имеет ту же базовую структуру, но металлический затвор заменен ионочувствительной мембраной , раствором электролита и электродом сравнения . [2] ISFET, изобретенный в 1970 году, стал первым биосенсорным полевым транзистором (BioFET).
Поверхностный гидролиз Si–OH-групп материалов затвора варьируется в водных растворах в зависимости от значения pH. Типичными материалами затвора являются SiO 2 , Si 3 N 4 , Al 2 O 3 и Ta 2 O 5 .
Механизм, ответственный за поверхностный заряд оксида, может быть описан моделью связывания сайтов , которая описывает равновесие между поверхностными центрами Si–OH и H + ионы в растворе. Гидроксильные группы, покрывающие оксидную поверхность, такую как поверхность SiO 2 , могут отдавать или принимать протон и, таким образом, вести себя амфотерно, что иллюстрируется следующими кислотно-основными реакциями, происходящими на границе раздела оксид-электролит:
- —Si–OH + H 2 O ↔ —Si–O − + Н3О +
- —Si–OH + H 3 O + ↔ —Si–OH 2 + + Н 2 О
Исток и сток ISFET сконструированы так же, как и MOSFET . Электрод затвора отделен от канала барьером, чувствительным к ионам водорода , и зазором, позволяющим тестируемому веществу вступить в контакт с чувствительным барьером. ISFET Пороговое напряжение зависит от pH вещества, находящегося в контакте с его ионно-чувствительным барьером.
за электрода сравнения ограничения из - Практические
Электрод ISFET, чувствительный к H + Концентрацию можно использовать в качестве обычного стеклянного электрода для измерения pH раствора. Однако для работы также требуется электрод сравнения . Если электрод сравнения, используемый в контакте с раствором, относится к классическому типу AgCl или Hg 2 Cl 2 , он будет иметь те же ограничения, что и обычные pH-электроды (потенциал перехода, утечка KCl и утечка глицерина в случае гелевого электрода). Обычный электрод сравнения также может быть громоздким и хрупким. Слишком большой объем, ограниченный классическим электродом сравнения, также исключает миниатюризацию электрода ISFET, обязательной функции для некоторых биологических или клинических анализов in vivo (одноразовый мини-катетерный pH-зонд). Поломка обычного электрода сравнения также может создать проблемы при онлайн-измерениях в фармацевтической или пищевой промышленности, если очень ценные продукты загрязнены остатками электрода или токсичными химическими соединениями на поздней стадии производства и должны быть выброшены в целях безопасности.
По этой причине на протяжении более 20 лет многие исследовательские усилия были посвящены встроенным в кристалл крошечным эталонным полевым транзисторам (REFET). Их принцип действия или режим работы могут различаться в зависимости от производителей электродов и часто являются собственностью и защищены патентами. Поверхности, модифицированные полупроводниками, необходимые для REFET, также не всегда находятся в термодинамическом равновесии с тестируемым раствором и могут быть чувствительны к агрессивным или мешающим растворенным веществам или к недостаточно хорошо изученным явлениям старения. Это не является серьезной проблемой, если электрод можно часто калибровать через регулярные промежутки времени и его легко обслуживать в течение всего срока службы. Однако это может стать проблемой, если электрод должен оставаться погруженным в работу в течение длительного периода времени или он недоступен из-за особых ограничений, связанных с характером самих измерений (геохимические измерения под повышенным давлением воды в суровых условиях или в бескислородных условиях). или восстановительные условия, которые легко нарушаются проникновением атмосферного кислорода или изменениями давления).
Решающим фактором для электродов ISFET, как и для обычных стеклянных электродов, остается электрод сравнения. При устранении неисправностей электрода зачастую большую часть проблем приходится искать со стороны электрода сравнения.
Низкочастотный ISFET шум
Для датчиков на основе ISFET низкочастотный шум наиболее вреден для общего отношения сигнал/шум, поскольку он может мешать биомедицинским сигналам, которые охватывают ту же частотную область. [3] Шум имеет в основном три источника. Источники шума вне самого ISFET называются внешним шумом, например, помехами окружающей среды и шумом приборов от цепей считывания терминалов. Собственный шум относится к шуму, возникающему в твердой части ISFET, который в основном вызван захватом и освобождением носителей на границе оксид/Si. А внешний шум обычно возникает на границе раздела жидкость/оксид, вызываемый ионным обменом на границе раздела жидкость/оксид. Для подавления шума ISFET изобретено множество методов. Например, чтобы подавить внешний шум, мы можем интегрировать биполярный переходной транзистор с ISFET, чтобы мгновенно реализовать внутреннее усиление тока стока. [4] А чтобы подавить собственный шум, мы можем заменить шумный интерфейс оксид/Si затвором Шоттки. [5]
История [ править ]
Основой ISFET является MOSFET . Голландский инженер Пит Бергвелд из Университета Твенте изучил МОП-транзистор и понял, что его можно адаптировать в датчик для электрохимических и биологических приложений. [6] [1] Это привело к изобретению Бергвельдом ISFET в 1970 году. [7] [6] Он описал ISFET как «особый тип MOSFET с затвором на определенном расстоянии». [1] Это был самый ранний биосенсорный полевой транзистор (BioFET). [8]
Датчики ISFET могут быть реализованы в интегральных схемах на основе технологии CMOS (дополнительная MOS). Устройства ISFET широко используются в биомедицинских приложениях, таких как обнаружение гибридизации ДНК , биомаркеров обнаружение в крови , обнаружение антител , измерение уровня глюкозы и определение pH . [2] ISFET также является основой для более поздних BioFET, таких как полевой транзистор ДНК (DNAFET). [2] [7] используется в генетических технологиях . [2]
См. также [ править ]
- Химический полевой транзистор
- Ионоселективные электроды
- MISFET : полевой транзистор металл-изолятор-полупроводник.
- МОП-транзистор : полевой транзистор металл-оксид-полупроводник.
- рН
- рН-метр
- Потенциометрия
- Хингидроновый электрод
- Насыщенный каломельный электрод
- Хлоридсеребряный электрод
- Стандартный водородный электрод
Ссылки [ править ]
- ↑ Перейти обратно: Перейти обратно: а б с Бергвельд, Пит (октябрь 1985 г.). «Воздействие датчиков на основе MOSFET» (PDF) . Датчики и исполнительные механизмы . 8 (2): 109–127. Бибкод : 1985SeAc....8..109B . дои : 10.1016/0250-6874(85)87009-8 . ISSN 0250-6874 .
- ↑ Перейти обратно: Перейти обратно: а б с д Шенинг, Майкл Дж.; Погосян, Аршак (10 сентября 2002 г.). «Последние достижения в области биологически чувствительных полевых транзисторов (BioFET)» (PDF) . Аналитик . 127 (9): 1137–1151. Бибкод : 2002Ана...127.1137С . дои : 10.1039/B204444G . ISSN 1364-5528 . ПМИД 12375833 .
- ^ Беднер, Кристина; Гузенко Виталий А.; Тарасов Алексей; Випф, Матиас; Ступ, Ральф Л.; Риганте, Сара; Бруннер, Ян; Фу, Ванъян; Дэвид, Кристиан; Калам, Мишель; Гобрехт, Йенс (февраль 2014 г.). «Исследование доминирующего источника шума 1/f в датчиках из кремниевых нанопроволок» . Датчики и исполнительные механизмы B: Химические вещества . 191 : 270–275. дои : 10.1016/j.snb.2013.09.112 . ISSN 0925-4005 .
- ^ Чжан, Да; Гао, Синьдун; Чен, Си; Норстрем, Ганс; Смит, Ульф; Соломон, Пол; Чжан, Ши-Ли; Чжан, Чжэнь (25 августа 2014 г.). «Биполярный усилитель с ионным управлением для обнаружения ионов с улучшенным сигналом и улучшенными шумовыми характеристиками» . Письма по прикладной физике . 105 (8): 082102. дои : 10.1063/1.4894240 . ISSN 0003-6951 .
- ^ Чен, Си; Чен, Си; Ху, Цитао; Чжан, Ши-Ли; Соломон, Пол; Чжан, Чжэнь (22 февраля 2019 г.). «Снижение шума устройства для датчиков на основе полевых транзисторов на основе кремниевых нанопроволок с использованием затвора Шоттки» . Датчики СКУД . 4 (2): 427–433. doi : 10.1021/acsensors.8b01394 . ISSN 2379-3694 . ПМИД 30632733 . S2CID 58624034 .
- ↑ Перейти обратно: Перейти обратно: а б Бергвельд, П. (январь 1970 г.). «Разработка ионно-чувствительного твердотельного устройства для нейрофизиологических измерений». Транзакции IEEE по биомедицинской инженерии . БМЭ-17(1): 70–71. дои : 10.1109/TBME.1970.4502688 . ПМИД 5441220 .
- ↑ Перейти обратно: Перейти обратно: а б Крис Тумазу; Пантелис Георгиу (декабрь 2011 г.). «40 лет технологии ISFET: от нейронального зондирования до секвенирования ДНК» . Электронные письма . 47 : С7. дои : 10.1049/эл.2011.3231 . Проверено 13 мая 2016 г.
- ^ Пак, Джехо; Нгуен, Хоанг Хиеп; Вубит, Абдела; Ким, Мунил (2014). «Применение биосенсоров полевого транзисторного типа (FET)» . Прикладная наука и конвергентные технологии . 23 (2): 61–71. дои : 10.5757/ASCT.2014.23.2.61 . ISSN 2288-6559 . S2CID 55557610 .
Библиография [ править ]
- Бергвельд, П. (2003). «Тридцать лет ИСФЕТОЛОГИИ. Что произошло за последние 30 лет и что может произойти в ближайшие 30 лет» . Датчики и исполнительные механизмы B: Химические вещества . 88 : 1–20. дои : 10.1016/S0925-4005(02)00301-5 .
- Бергвельд, П. (2003). ISFET, теория и практика (PDF) . Конференция IEEE Sensor, октябрь 2003 г. Торонто: IEEE. п. 26.
- Датчики pH ISFET
Дальнейшее чтение [ править ]
- Ротберг, Джонатан М (2011). «Интегрированное полупроводниковое устройство, позволяющее неоптическое секвенирование генома» . Природа . 475 (7356): 348–52. дои : 10.1038/nature10242 . ISSN 1476-4687 . ПМИД 21776081 .
- Бергвельд, П. (1985). «Влияние датчиков на основе MOSFET» . Датчики и исполнительные механизмы . 8 (2): 109–127. Бибкод : 1985SeAc....8..109B . дои : 10.1016/0250-6874(85)87009-8 . ISSN 0250-6874 .
- Бергвельд, П. (1986). «Разработка и применение биосенсоров на основе полевых транзисторов» . Биосенсоры . 2 (1): 15–33. дои : 10.1016/0265-928X(86)85010-6 . ISSN 0265-928X . ПМИД 3790175 .
- Бергвельд, П. (1991). «Критическая оценка методов прямого электрического обнаружения белков» . Биосенсоры и биоэлектроника . 6 (1): 55–72. дои : 10.1016/0956-5663(91)85009-L . ISSN 0956-5663 . ПМИД 2049171 .
- Бергвельд, П. (2003). «Тридцать лет ИСФЕТОЛОГИИ: Что произошло за последние 30 лет и что может произойти в ближайшие 30 лет» . Датчики и исполнительные механизмы B: Химические вещества . 88 (1): 1–20. дои : 10.1016/S0925-4005(02)00301-5 . ISSN 0925-4005 .
- Бергвельд, П. (2003). ISFET, теория и практика (PDF) . Конференция IEEE Sensor, Торонто, октябрь 2003 г. Торонто: IEEE. стр. 26 стр. Архивировано из оригинала (PDF) 20 августа 2008 г.
- Бергвельд, П; Ван ден Берг; П. Д. Ван дер Валь; М. Сковронская-Птасинская; Э.Р. Судхёльтер; Д.Н. Рейнхудт (1989). «Как электрические и химические требования к REFET могут совпадать» . Датчики и исполнительные механизмы . 18 (3–4): 309–327. дои : 10.1016/0250-6874(89)87038-6 . ISSN 0250-6874 .
- Чуди, М; В. Врублевский; З Бржозка (1999). «Навстречу РЕФЕТ». Датчики и исполнительные механизмы B: Химические вещества . 57 (1–3): 47–50. дои : 10.1016/S0925-4005(99)00134-3 . ISSN 0925-4005 .
- Скинни, Майкл; Войцех Врублевский; Збигнев Бжозка (1999). «Навстречу РЕФЕТ». Датчики и исполнительные механизмы B: Химические вещества . 57 (1–3): 47–50. дои : 10.1016/S0925-4005(99)00134-3 . ISSN 0925-4005 .
- Коллинз, SD (1993). «Практические пределы для твердотельных электродов сравнения». Датчики и исполнительные механизмы B: Химические вещества . 10 (3): 169–178. дои : 10.1016/0925-4005(93)87002-7 . ISSN 0925-4005 .
- Дюру, П; С Эмде; П Бауэрфайнд; С Фрэнсис; Гризель; Л. Тибо; Д. Армстронг; C Деперсинж; А. Л. Блюм (1991). «Ионно-чувствительный полевой транзистор (ISFET) pH-электрод: новый датчик для долгосрочного амбулаторного мониторинга pH» . Гут . 32 (3): 240–245. дои : 10.1136/gut.32.3.240 . ISSN 0017-5749 . ПМЦ 1378826 . ПМИД 2013417 .
- Эррашид, А.; Дж. Бауселлс; Н. Джафрезич-Рено (1999). «Простой REFET для определения pH в дифференциальном режиме». Датчики и исполнительные механизмы B: Химические вещества . 60 (1): 43–48. дои : 10.1016/S0925-4005(99)00242-7 . ISSN 0925-4005 .
- Галлаб, Ю.Х.; В. Бадави; КВИС Калер. «Новый датчик pH, использующий схему считывания дифференциального тока ISFET». Материалы Международной конференции по МЭМС, НАНО и интеллектуальным системам . Международная конференция по МЭМС, НАНО и интеллектуальным системам. Банф, Альта, Канада. стр. 255–258. дои : 10.1109/ICMENS.2003.1222002 .
- Гут, У; Ф. Герлах; М. Декер; В. Ольснер; В Вонау (2009). «Твердотельные электроды сравнения для потенциометрических датчиков». Журнал электрохимии твердого тела . 13 (1): 27–39. дои : 10.1007/s10008-008-0574-7 . ISSN 1432-8488 . S2CID 94301958 .
- Хуан, И-Ю. «Исследовательская группа химических сенсоров» . Проверено 1 ноября 2010 г.
{{cite journal}}
: Для цитирования журнала требуется|journal=
( помощь ) - Хуан, И-Ю; Руэй-Шин Хуан; Ли-Си Ло (2002). «Новый структурированный ISFET-транзистор со встроенным электродом Ti/Pd/Ag/AgCl и микрообработанными P+-контактами на обратной стороне» . Журнал Китайского института инженеров . 25 (3): 327–334. дои : 10.1080/02533839.2002.9670707 . S2CID 109790089 . Архивировано из оригинала 3 июля 2011 г. Проверено 1 ноября 2010 г.
- Кал, С.; Бхану, П.В. (2007). Проектирование и моделирование ISFET для измерения pH . TENCON 2007–2007 Конференция IEEE региона 10. Тайбэй. стр. 1–4. дои : 10.1109/TENCON.2007.4428805 . ISBN 978-1-4244-1272-3 .
- Кисель, Анна; Агата Михальская; Кшиштоф Максимюк (сентябрь 2007 г.). «Пластиковые электроды сравнения и пластиковые потенциометрические ячейки с дисперсионно-литыми мембранами на основе поли(3,4-этилендиокситиофена) и поливинилхлорида». Биоэлектрохимия . 71 (1): 75–80. doi : 10.1016/j.bioelechem.2006.09.006 . ISSN 1567-5394 . ПМИД 17107827 .
- Ли, ЮК; БК Зон (2002). «Разработка эталонного электрода типа полевого транзистора для определения pH». Журнал Корейского физического общества . 40 (4): 601–604. Бибкод : 2002JKPS...40..601Y . дои : 10.3938/jkps.40.601 . ISSN 0374-4884 .
- Лисдат, Ф.; В. Мориц (август 1993 г.). «Эталонный элемент на основе твердотельной структуры». Датчики и исполнительные механизмы B: Химические вещества . 15 (1–3): 228–232. дои : 10.1016/0925-4005(93)85057-H . ISSN 0925-4005 .
- Сковронская-Птасинская, М; П. Д. Ван Дер Валь; Ван Ден Берг; П. Бергвельд; Э.Р. Судхёльтер; Д.Н. Рейнхудт (1990). «Эталонные полевые транзисторы на основе химически модифицированных ISFET» . Аналитика Химика Акта . 230 : 67–73. дои : 10.1016/s0003-2670(00)82762-2 . ISSN 0003-2670 .
- Сузуки, Хироаки; Тайси Хиракава; Сатоши Сасаки; Исао Карубе (15 февраля 1998 г.). «Микромашинный электрод сравнения Ag/AgCl с жидкостным переходом». Датчики и исполнительные механизмы B: Химические вещества . 46 (2): 146–154. дои : 10.1016/S0925-4005(98)00110-5 . ISSN 0925-4005 .
- ван ден Берг, А.; А. Гризель; Х.Х. ван ден Влеккерт; Н. Ф. де Рой (январь 1990 г.). «Микрообъемный электрод сравнения с открытым жидкостным переходом для pH-ISFET». Датчики и исполнительные механизмы B: Химические вещества . 1 (1–6): 425–432. дои : 10.1016/0925-4005(90)80243-S . ISSN 0925-4005 .
- Вонау, В.; В. Ольснер; У. Гут; Дж. Хенце (17 февраля 2010 г.). «Полностью твердотельный электрод сравнения». Датчики и исполнительные механизмы B: Химические вещества . 144 (2): 368–373. дои : 10.1016/j.snb.2008.12.001 . ISSN 0925-4005 .