Jump to content

Волшебная звезда

n -конечная волшебная звезда это звездный многоугольник с символом Шлефли { n /2} [1] в котором числа размещены в каждой из n вершин и n пересечений, так что сумма четырех чисел в каждой строке дает одну и ту же магическую константу . [2] Обычная n содержит целые числа от 1 до 2 волшебная звезда без повторяющихся чисел. [3] Магическая константа n -конечной нормальной магической звезды равна M = 4 n + 2.

Звездных многоугольников с числом менее 5 вершин не существует, и построение обычной пятиконечной волшебной звезды оказывается невозможным. Можно доказать, что не существует четырехконечной звезды, которая удовлетворяла бы этим условиям. Таким образом, самые маленькие примеры обычных магических звезд шестиконечные. Некоторые примеры приведены ниже. Обратите внимание, что для определенных значений n - n конечные магические звезды также известны как магические гексаграммы (n = 6), магические гептаграммы (n = 7) и т. д.

Магическая гексаграмма
М = 26
Магическая гептаграмма
М = 30
Волшебная октаграмма
М = 34

Число различных нормальных магических звезд типа { n /2} для n до 15 равно:

0, 80, 72, 112, 3014, 10882, 53528, 396930, 2434692, 15278390, 120425006, ... (последовательность A200720 в OEIS ).

См. также

[ редактировать ]
  1. ^ Вайсштейн, Эрик В. «Звездный полигон» . Математический мир .
  2. ^ Сташков, Рональд (1 мая 2003 г.). Математические навыки: арифметика с вводной алгеброй и геометрией . Кендалл Хант. п. 374 . ISBN  9780787292966 . волшебная звезда математики.
  3. ^ «Индексная страница Magic Stars» . www.magic-squares.net . Проверено 14 января 2017 г.
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 2c91524aa5e935b58aed7758b8607027__1720785300
URL1:https://arc.ask3.ru/arc/aa/2c/27/2c91524aa5e935b58aed7758b8607027.html
Заголовок, (Title) документа по адресу, URL1:
Magic star - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)