Jump to content

Томас Байес

Томас Байес
Единственный известный портрет Байеса из книги 1936 года. [1] но сомнительно, действительно ли это его портрет. [2] [3]
Рожденный в. 1701 г.
Лондон , Англия
Умер 7 апреля 1761 г. ) ( 1761-04-07 ) ( 59 лет
Альма-матер Эдинбургский университет
Известный Байесовская статистика
Теорема Байеса
Условная вероятность
Обратная вероятность
Байесовский априор
Байесовский фактор
Байесовский вывод
Посмотреть полный список
Научная карьера
Поля Вероятность
Подпись

Томас Байес ( / b z / BAYZ audio ; ок. 1701 - 7 апреля 1761 г. [2] [4] [примечание 1] ) был английским статистиком , философом и пресвитерианским священником , который известен тем, что сформулировал частный случай теоремы, носящей его имя: теорему Байеса . Байес никогда не публиковал то, что стало его самым известным достижением; его записи были отредактированы и опубликованы посмертно Ричардом Прайсом . [5]

Биография [ править ]

Часовня на горе Сион, где Байес служил министром.

Томас Байес был сыном лондонского пресвитерианского священника Джошуа Байеса . [6] и, возможно, родился в Хартфордшире . [7] Он происходил из известной семьи нонконформистов из Шеффилда . В 1719 году он поступил в Эдинбургский университет, чтобы изучать логику и теологию. По возвращении около 1722 года он помогал своему отцу в часовне последнего в Лондоне, а затем переехал в Танбридж-Уэллс , Кент, около 1734 года. Там он был священником часовни на горе Сион до 1752 года. [8]

Известно, что за свою жизнь он опубликовал две работы: одну теологическую и одну математическую:

  1. Божественное благоволение, или попытка доказать, что главная цель Божественного промысла и правления - счастье Его созданий (1731 г.)
  2. «Введение в доктрину флюксий и защита математиков против возражений автора книги «Аналитик»» (опубликованной анонимно в 1736 г.), в которой он защищал логическую основу Исаака Ньютона ( исчисления «флюксии») против критика Джорджа Беркли , епископа и известного философа, автора The Analyst

Байес был избран членом Королевского общества в 1742 году. Его письмо о выдвижении было подписано Филипом Стэнхоупом , Мартином Фолксом , Джеймсом Берроу , Кромвелем Мортимером и Джоном Имсом . Предполагается, что он был принят обществом на основании « Введения в доктрину флюксий» , поскольку неизвестно, публиковал ли он при жизни какую-либо другую математическую работу. [9]

В последние годы своей жизни он глубоко интересовался вероятностью. Историк Стивен Стиглер считает, что Байес заинтересовался этим предметом, просматривая работу, написанную в 1755 году Томасом Симпсоном . [10] но Джордж Альфред Барнард думает, что он изучил математику и теорию вероятностей из книги Авраама де Муавра . [11] Другие предполагают, что он был мотивирован опровергнуть аргумент Дэвида Юма против веры в чудеса на основании показаний в « Исследовании о человеческом понимании» . [12] Его работа и открытия по теории вероятностей были переданы в виде рукописи его другу Ричарду Прайсу после его смерти.

Памятник членам семей Байес и Коттон, в том числе Томасу Байесу и его отцу Джошуа, на Банхилл Филдс. кладбище

К 1755 году он заболел, а к 1761 году умер в Танбридж-Уэллсе. Он был похоронен на Банхилл Филдс кладбище множество нонконформистов в Мургейте, Лондон, где похоронено .

В 2018 году Эдинбургский университет открыл исследовательский центр стоимостью 45 миллионов фунтов стерлингов, связанный с его факультетом информатики, названный в честь его выпускника Байеса. [13]

В апреле 2021 года было объявлено, что бизнес-школа Cass , кампус которой в лондонском Сити находится на Банхилл-Роу , будет переименована в честь Байеса. [13]

Теорема Байеса [ править ]

Решение Байеса проблемы обратной вероятности было представлено в «Очерке решения проблемы доктрины шансов» , который был зачитан Королевскому обществу в 1763 году после смерти Байеса. Ричард Прайс руководил работой над этой презентацией и ее публикацией в «Философских трудах» Лондонского королевского общества в следующем году. [14] Это был аргумент в пользу использования равномерного априорного распределения для биномиального параметра, а не просто общий постулат. [15] В этом очерке приводится следующая теорема (изложенная здесь в современной терминологии).

Предположим, что величина R между равномерно распределена 0 и 1. Предположим, что каждый из X 1 , ..., X n равен либо 1, либо 0, и условная вероятность того, что любой из них равен 1, учитывая значение R , это Р. ​Предположим, что они условно независимы, учитывая значение R . Тогда условное распределение вероятностей R при значениях X 1 , ..., X n равно

Так, например,

Это частный случай теоремы Байеса .

В первые десятилетия восемнадцатого века были решены многие проблемы, касающиеся вероятности определенных событий при определенных условиях. Например: при заданном количестве белых и черных шаров в урне, какова вероятность вытащить черный шар? Или наоборот: если вытащили один или несколько шаров, что можно сказать о количестве белых и черных шаров в урне? Их иногда называют задачами « обратной вероятности ».

Байеса В «Эссе» содержится его решение аналогичной проблемы, поставленной Абрахамом де Муавром , автором «Учения о шансах» (1718).

Кроме того, посмертно была опубликована статья Байеса об асимптотических рядах .

Байесианство [ править ]

Байесовская вероятность — это название, данное нескольким связанным интерпретациям вероятности как степени эпистемической уверенности — силы убеждений, гипотез и т. д. — а не частоты. Это позволяет применять вероятность ко всем видам предложений, а не только к тем, которые имеют справочный класс. «Байесовский» термин использовался в этом смысле примерно с 1950 года. С момента его возрождения в 1950-х годах достижения в области вычислительных технологий позволили ученым из многих дисциплин сочетать традиционную байесовскую статистику с методами случайного блуждания . Использование теоремы Байеса получило распространение в науке и других областях. [16]

Сам Байес, возможно, не принял широкую интерпретацию, ныне называемую байесовской, которая на самом деле была впервые предложена и популяризирована Пьером -Симоном Лапласом ; [17] трудно оценить философские взгляды Байеса на вероятность, поскольку его эссе не затрагивает вопросы интерпретации. Там Байес определяет вероятность события как «отношение между значением, при котором должно быть вычислено ожидание, зависящее от наступления события, и ценностью ожидаемой вещи при его наступлении» (Определение 5). В современной теории полезности то же самое определение может быть получено путем изменения определения ожидаемой полезности (вероятность события, умноженная на выигрыш, полученный в случае этого события, включая особые случаи покупки риска за небольшие суммы или покупки ценных бумаг за большие суммы). решить на вероятность. Как отмечает Стиглер, [10] это субъективное определение и не требует повторения событий; однако для этого требуется, чтобы рассматриваемое событие было наблюдаемым, поскольку в противном случае нельзя было бы сказать, что оно «произошло». Стиглер утверждает, что Байес имел более ограниченные цели, чем современные байесовцы. Учитывая определение вероятности, данное Байесом, его результат, касающийся параметра биномиального распределения, имеет смысл только в той степени, в которой можно делать ставку на его наблюдаемые последствия.

Философия байесовской статистики лежит в основе почти каждого современного подхода к оценке, который включает условные вероятности, такие как последовательная оценка, вероятностные методы машинного обучения, оценка рисков, одновременная локализация и картирование, регуляризация или теория информации. Однако строгая аксиоматическая основа теории вероятностей в целом была разработана 200 лет спустя, в начале и середине 20-го века, начиная с глубоких результатов в эргодической теории, полученных Планшерелем в 1913 году. [ нужна ссылка ]

См. также [ править ]

Примечания [ править ]

  1. На надгробии Байеса написано, что он умер в возрасте 59 лет 7 апреля 1761 года, поэтому он родился либо в 1701, либо в 1702 году. Некоторые источники ошибочно указывают дату смерти как 17 апреля, но все эти источники, похоже, возникли из-за дублированной технической ошибки; нет никаких доказательств в пользу даты смерти 17 апреля. Дата рождения Байеса неизвестна, вероятно, из-за того, что он был крещен в несогласной церкви, которая либо не вела, либо не могла сохранить записи о крещении; согласовать Королевского общества каталог библиотеки и архива , Томас Байес (1701–1761) [2]

Ссылки [ править ]

Цитаты [ править ]

  1. ^ Теренс О'Доннелл, История страхования жизни в годы его становления (Чикаго: American Conservation Co:, 1936), стр. 335 (подпись «Преподобный Т. Байес: усовершенствование столбчатого метода, разработанного Барреттом»).
  2. ^ Перейти обратно: а б с Портрет Байеса The IMS Bulletin , Vol. 17 (1988), № 3, стр. 276–278.
  3. ^ Беллхаус, ДР (1 февраля 2004 г.). «Преподобный Томас Байес, FRS: Биография в честь трехсотлетия со дня его рождения» . Статистическая наука . 19 (1): 3. Бибкод : 2004StaSc..19....3B . дои : 10.1214/088342304000000189 . ISSN   0883-4237 .
  4. Белхаус, Д.Р. Преподобный Томас Байес, FRS: биография в честь трехсотлетия со дня его рождения. Архивировано 5 марта 2016 года в Wayback Machine .
  5. ^ МакГрейн, Шэрон Берч. (2011). Теория, которая не умрет с. 10. , с. 10, в Google Книгах
  6. ^ «Байес, Джошуа» . Словарь национальной биографии . Лондон: Смит, Элдер и компания 1885–1900.
  7. ^ Оксфордский национальный биографический словарь , статья AWF Эдвардса о Байесе.
  8. ^ «Преподобный Томас Байес, FRS – Биография» (PDF) . Институт математической статистики . Проверено 18 июля 2010 г.
  9. ^ «Списки членов Королевского общества 1660–2007 гг.» (PDF) . Лондон: Королевское общество . Проверено 19 марта 2011 г.
  10. ^ Перейти обратно: а б Стиглер, С.М. (1986). История статистики: измерение неопределенности до 1900 года . Издательство Гарвардского университета . ISBN  0-674-40340-1 .
  11. ^ Барнард, Джорджия (1958). «Томас Байес - биографическая справка». Биометрика . 45 : 293–295. дои : 10.2307/2333180 . JSTOR   2333180 .
  12. ^ Цепелевич, Джордана (20 декабря 2016 г.). «Как защита христианства произвела революцию в науке о мозге» . Наутилус (научный журнал) . Проверено 20 декабря 2016 г.
  13. ^ Перейти обратно: а б «Бизнес-школа Касса будет переименована в честь статистика Томаса Байеса» . Файнэншл Таймс . 21 апреля 2021 года. Архивировано из оригинала 10 декабря 2022 года.
  14. ^ Байес, Томас (1763). «Очерк решения проблемы учения о шансах» . Философские труды . 53 : 370–418. дои : 10.1098/rstl.1763.0053 . S2CID   186213794 .
  15. ^ Эдвардс, AWG «Комментарий к аргументам Томаса Байеса», Скандинавский статистический журнал , Vol. 5, № 2 (1978), стр. 116–118; получено 6 августа 2011 г.
  16. ^ Паулос, Джон Аллен . «Математика изменения вашего мнения», New York Times (США). 5 августа 2011 г.; получено 6 августа 2011 г.
  17. ^ Стиглер, Стивен М. (1986) История статистики. , издательство Гарвардского университета. стр. 97–98, 131.

Источники [ править ]

Внешние ссылки [ править ]


Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 8fcbe2cd2ce995c6529c2b55041ee1cb__1718321700
URL1:https://arc.ask3.ru/arc/aa/8f/cb/8fcbe2cd2ce995c6529c2b55041ee1cb.html
Заголовок, (Title) документа по адресу, URL1:
Thomas Bayes - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)