Connects a very general infinite series with an infinite continued fraction.
В теории формула цепных дробей аналитической Эйлера в виде цепной дроби представляет собой тождество, связывающее некий очень общий бесконечный ряд с бесконечной цепной дробью . Впервые опубликованная в 1748 году, она сначала рассматривалась как простое тождество, связывающее конечную сумму с конечной цепной дробью таким образом, что расширение на бесконечный случай сразу же стало очевидным. [ 1 ] Сегодня его более полно ценят как полезный инструмент при аналитическом подходе к общей проблеме сходимости бесконечных цепных дробей с комплексными элементами.
Эйлер вывел формулу как
соединяющее конечную сумму произведений с конечной цепной дробью .
a
0
(
1
+
a
1
(
1
+
a
2
(
⋯
+
a
n
)
⋯
)
)
=
a
0
+
a
0
a
1
+
a
0
a
1
a
2
+
⋯
+
a
0
a
1
a
2
⋯
a
n
=
a
0
1
−
a
1
1
+
a
1
−
a
2
1
+
a
2
−
⋱
⋱
a
n
−
1
1
+
a
n
−
1
−
a
n
1
+
a
n
{\displaystyle a_{0}\left(1+a_{1}\left(1+a_{2}\left(\cdots +a_{n}\right)\cdots \right)\right)=a_{0}+a_{0}a_{1}+a_{0}a_{1}a_{2}+\cdots +a_{0}a_{1}a_{2}\cdots a_{n}={\cfrac {a_{0}}{1-{\cfrac {a_{1}}{1+a_{1}-{\cfrac {a_{2}}{1+a_{2}-{\cfrac {\ddots }{\ddots {\cfrac {a_{n-1}}{1+a_{n-1}-{\cfrac {a_{n}}{1+a_{n}}}}}}}}}}}}}\,}
Тождество легко устанавливается индукцией по n и, следовательно, применимо в пределе: если выражение слева расширяется для представления сходящегося бесконечного ряда , выражение справа также может быть расширено для представления сходящейся бесконечной цепной дроби .
Это записывается более компактно с использованием обобщенной записи цепной дроби:
a
0
+
a
0
a
1
+
a
0
a
1
a
2
+
⋯
+
a
0
a
1
a
2
⋯
a
n
=
a
0
1
+
−
a
1
1
+
a
1
+
−
a
2
1
+
a
2
+
⋯
−
a
n
1
+
a
n
.
{\displaystyle a_{0}+a_{0}a_{1}+a_{0}a_{1}a_{2}+\cdots +a_{0}a_{1}a_{2}\cdots a_{n}={\frac {a_{0}}{1+}}\,{\frac {-a_{1}}{1+a_{1}+}}\,{\cfrac {-a_{2}}{1+a_{2}+}}\cdots {\frac {-a_{n}}{1+a_{n}}}.}
Если r i — комплексные числа и x определяется формулой
x
=
1
+
∑
i
=
1
∞
r
1
r
2
⋯
r
i
=
1
+
∑
i
=
1
∞
(
∏
j
=
1
i
r
j
)
,
{\displaystyle x=1+\sum _{i=1}^{\infty }r_{1}r_{2}\cdots r_{i}=1+\sum _{i=1}^{\infty }\left(\prod _{j=1}^{i}r_{j}\right)\,,}
то это равенство можно доказать по индукции
x
=
1
1
−
r
1
1
+
r
1
−
r
2
1
+
r
2
−
r
3
1
+
r
3
−
⋱
{\displaystyle x={\cfrac {1}{1-{\cfrac {r_{1}}{1+r_{1}-{\cfrac {r_{2}}{1+r_{2}-{\cfrac {r_{3}}{1+r_{3}-\ddots }}}}}}}}\,}
.
Здесь под равенством следует понимать эквивалентность в том смысле, что n -я подходящая дробь каждой цепной дроби равна n -й частичной сумме ряда, показанного выше. Таким образом, если показанный ряд сходится – или сходится равномерно , когда r i являются функциями некоторой комплексной переменной z – тогда непрерывные дроби также сходятся или сходятся равномерно. [ 2 ]
Теорема: Пусть
n
{\displaystyle n}
быть натуральным числом. Для
n
+
1
{\displaystyle n+1}
сложные значения
a
0
,
a
1
,
…
,
a
n
{\displaystyle a_{0},a_{1},\ldots ,a_{n}}
,
∑
k
=
0
n
∏
j
=
0
k
a
j
=
a
0
1
+
−
a
1
1
+
a
1
+
⋯
−
a
n
1
+
a
n
{\displaystyle \sum _{k=0}^{n}\prod _{j=0}^{k}a_{j}={\frac {a_{0}}{1+}}\,{\frac {-a_{1}}{1+a_{1}+}}\cdots {\frac {-a_{n}}{1+a_{n}}}}
и для
n
{\displaystyle n}
сложные значения
b
1
,
…
,
b
n
{\displaystyle b_{1},\ldots ,b_{n}}
,
−
b
1
1
+
b
1
+
−
b
2
1
+
b
2
+
⋯
−
b
n
1
+
b
n
≠
−
1.
{\displaystyle {\frac {-b_{1}}{1+b_{1}+}}\,{\frac {-b_{2}}{1+b_{2}+}}\cdots {\frac {-b_{n}}{1+b_{n}}}\neq -1.}
Доказательство: Проведем двойную индукцию. Для
n
=
1
{\displaystyle n=1}
, у нас есть
a
0
1
+
−
a
1
1
+
a
1
=
a
0
1
+
−
a
1
1
+
a
1
=
a
0
(
1
+
a
1
)
1
=
a
0
+
a
0
a
1
=
∑
k
=
0
1
∏
j
=
0
k
a
j
{\displaystyle {\frac {a_{0}}{1+}}\,{\frac {-a_{1}}{1+a_{1}}}={\frac {a_{0}}{1+{\frac {-a_{1}}{1+a_{1}}}}}={\frac {a_{0}(1+a_{1})}{1}}=a_{0}+a_{0}a_{1}=\sum _{k=0}^{1}\prod _{j=0}^{k}a_{j}}
и
−
b
1
1
+
b
1
≠
−
1.
{\displaystyle {\frac {-b_{1}}{1+b_{1}}}\neq -1.}
Теперь предположим, что оба утверждения верны для некоторых
n
≥
1
{\displaystyle n\geq 1}
.
У нас есть
−
b
1
1
+
b
1
+
−
b
2
1
+
b
2
+
⋯
−
b
n
+
1
1
+
b
n
+
1
=
−
b
1
1
+
b
1
+
x
{\displaystyle {\frac {-b_{1}}{1+b_{1}+}}\,{\frac {-b_{2}}{1+b_{2}+}}\cdots {\frac {-b_{n+1}}{1+b_{n+1}}}={\frac {-b_{1}}{1+b_{1}+x}}}
где
x
=
−
b
2
1
+
b
2
+
⋯
−
b
n
+
1
1
+
b
n
+
1
≠
−
1
{\displaystyle x={\frac {-b_{2}}{1+b_{2}+}}\cdots {\frac {-b_{n+1}}{1+b_{n+1}}}\neq -1}
применив гипотезу индукции к
b
2
,
…
,
b
n
+
1
{\displaystyle b_{2},\ldots ,b_{n+1}}
.
Но если
−
b
1
1
+
b
1
+
x
=
−
1
{\displaystyle {\frac {-b_{1}}{1+b_{1}+x}}=-1}
подразумевает
b
1
=
1
+
b
1
+
x
{\displaystyle b_{1}=1+b_{1}+x}
подразумевает
x
=
−
1
{\displaystyle x=-1}
, противоречие. Следовательно
−
b
1
1
+
b
1
+
−
b
2
1
+
b
2
+
⋯
−
b
n
+
1
1
+
b
n
+
1
≠
−
1
,
{\displaystyle {\frac {-b_{1}}{1+b_{1}+}}\,{\frac {-b_{2}}{1+b_{2}+}}\cdots {\frac {-b_{n+1}}{1+b_{n+1}}}\neq -1,}
завершая эту индукцию.
Обратите внимание, что для
x
≠
−
1
{\displaystyle x\neq -1}
,
1
1
+
−
a
1
+
a
+
x
=
1
1
−
a
1
+
a
+
x
=
1
+
a
+
x
1
+
x
=
1
+
a
1
+
x
;
{\displaystyle {\frac {1}{1+}}\,{\frac {-a}{1+a+x}}={\frac {1}{1-{\frac {a}{1+a+x}}}}={\frac {1+a+x}{1+x}}=1+{\frac {a}{1+x}};}
если
x
=
−
1
−
a
{\displaystyle x=-1-a}
, то обе части равны нулю.
С использованием
a
=
a
1
{\displaystyle a=a_{1}}
и
x
=
−
a
2
1
+
a
2
+
⋯
−
a
n
+
1
1
+
a
n
+
1
≠
−
1
{\displaystyle x={\frac {-a_{2}}{1+a_{2}+}}\,\cdots {\frac {-a_{n+1}}{1+a_{n+1}}}\neq -1}
,
и применив гипотезу индукции к значениям
a
1
,
a
2
,
…
,
a
n
+
1
{\displaystyle a_{1},a_{2},\ldots ,a_{n+1}}
,
a
0
+
a
0
a
1
+
a
0
a
1
a
2
+
⋯
+
a
0
a
1
a
2
a
3
⋯
a
n
+
1
=
a
0
+
a
0
(
a
1
+
a
1
a
2
+
⋯
+
a
1
a
2
a
3
⋯
a
n
+
1
)
=
a
0
+
a
0
(
a
1
1
+
−
a
2
1
+
a
2
+
⋯
−
a
n
+
1
1
+
a
n
+
1
)
=
a
0
(
1
+
a
1
1
+
−
a
2
1
+
a
2
+
⋯
−
a
n
+
1
1
+
a
n
+
1
)
=
a
0
(
1
1
+
−
a
1
1
+
a
1
+
−
a
2
1
+
a
2
+
⋯
−
a
n
+
1
1
+
a
n
+
1
)
=
a
0
1
+
−
a
1
1
+
a
1
+
−
a
2
1
+
a
2
+
⋯
−
a
n
+
1
1
+
a
n
+
1
,
{\displaystyle {\begin{aligned}a_{0}+&a_{0}a_{1}+a_{0}a_{1}a_{2}+\cdots +a_{0}a_{1}a_{2}a_{3}\cdots a_{n+1}\\&=a_{0}+a_{0}(a_{1}+a_{1}a_{2}+\cdots +a_{1}a_{2}a_{3}\cdots a_{n+1})\\&=a_{0}+a_{0}{\big (}{\frac {a_{1}}{1+}}\,{\frac {-a_{2}}{1+a_{2}+}}\,\cdots {\frac {-a_{n+1}}{1+a_{n+1}}}{\big )}\\&=a_{0}{\big (}1+{\frac {a_{1}}{1+}}\,{\frac {-a_{2}}{1+a_{2}+}}\,\cdots {\frac {-a_{n+1}}{1+a_{n+1}}}{\big )}\\&=a_{0}{\big (}{\frac {1}{1+}}\,{\frac {-a_{1}}{1+a_{1}+}}\,{\frac {-a_{2}}{1+a_{2}+}}\,\cdots {\frac {-a_{n+1}}{1+a_{n+1}}}{\big )}\\&={\frac {a_{0}}{1+}}\,{\frac {-a_{1}}{1+a_{1}+}}\,{\frac {-a_{2}}{1+a_{2}+}}\,\cdots {\frac {-a_{n+1}}{1+a_{n+1}}},\end{aligned}}}
завершая другую индукцию.
Например, выражение
a
0
+
a
0
a
1
+
a
0
a
1
a
2
+
a
0
a
1
a
2
a
3
{\displaystyle a_{0}+a_{0}a_{1}+a_{0}a_{1}a_{2}+a_{0}a_{1}a_{2}a_{3}}
можно переставить в непрерывную дробь.
a
0
+
a
0
a
1
+
a
0
a
1
a
2
+
a
0
a
1
a
2
a
3
=
a
0
(
a
1
(
a
2
(
a
3
+
1
)
+
1
)
+
1
)
=
a
0
1
a
1
(
a
2
(
a
3
+
1
)
+
1
)
+
1
=
a
0
a
1
(
a
2
(
a
3
+
1
)
+
1
)
+
1
a
1
(
a
2
(
a
3
+
1
)
+
1
)
+
1
−
a
1
(
a
2
(
a
3
+
1
)
+
1
)
a
1
(
a
2
(
a
3
+
1
)
+
1
)
+
1
=
a
0
1
−
a
1
(
a
2
(
a
3
+
1
)
+
1
)
a
1
(
a
2
(
a
3
+
1
)
+
1
)
+
1
=
a
0
1
−
a
1
a
1
(
a
2
(
a
3
+
1
)
+
1
)
+
1
a
2
(
a
3
+
1
)
+
1
=
a
0
1
−
a
1
a
1
(
a
2
(
a
3
+
1
)
+
1
)
a
2
(
a
3
+
1
)
+
1
+
a
2
(
a
3
+
1
)
+
1
a
2
(
a
3
+
1
)
+
1
−
a
2
(
a
3
+
1
)
a
2
(
a
3
+
1
)
+
1
=
a
0
1
−
a
1
1
+
a
1
−
a
2
(
a
3
+
1
)
a
2
(
a
3
+
1
)
+
1
=
a
0
1
−
a
1
1
+
a
1
−
a
2
a
2
(
a
3
+
1
)
+
1
a
3
+
1
=
a
0
1
−
a
1
1
+
a
1
−
a
2
a
2
(
a
3
+
1
)
a
3
+
1
+
a
3
+
1
a
3
+
1
−
a
3
a
3
+
1
=
a
0
1
−
a
1
1
+
a
1
−
a
2
1
+
a
2
−
a
3
1
+
a
3
{\displaystyle {\begin{aligned}a_{0}+a_{0}a_{1}+a_{0}a_{1}a_{2}+a_{0}a_{1}a_{2}a_{3}&=a_{0}(a_{1}(a_{2}(a_{3}+1)+1)+1)\\[8pt]&={\cfrac {a_{0}}{\cfrac {1}{a_{1}(a_{2}(a_{3}+1)+1)+1}}}\\[8pt]&={\cfrac {a_{0}}{{\cfrac {a_{1}(a_{2}(a_{3}+1)+1)+1}{a_{1}(a_{2}(a_{3}+1)+1)+1}}-{\cfrac {a_{1}(a_{2}(a_{3}+1)+1)}{a_{1}(a_{2}(a_{3}+1)+1)+1}}}}={\cfrac {a_{0}}{1-{\cfrac {a_{1}(a_{2}(a_{3}+1)+1)}{a_{1}(a_{2}(a_{3}+1)+1)+1}}}}\\[8pt]&={\cfrac {a_{0}}{1-{\cfrac {a_{1}}{\cfrac {a_{1}(a_{2}(a_{3}+1)+1)+1}{a_{2}(a_{3}+1)+1}}}}}\\[8pt]&={\cfrac {a_{0}}{1-{\cfrac {a_{1}}{{\cfrac {a_{1}(a_{2}(a_{3}+1)+1)}{a_{2}(a_{3}+1)+1}}+{\cfrac {a_{2}(a_{3}+1)+1}{a_{2}(a_{3}+1)+1}}-{\cfrac {a_{2}(a_{3}+1)}{a_{2}(a_{3}+1)+1}}}}}}={\cfrac {a_{0}}{1-{\cfrac {a_{1}}{1+a_{1}-{\cfrac {a_{2}(a_{3}+1)}{a_{2}(a_{3}+1)+1}}}}}}\\[8pt]&={\cfrac {a_{0}}{1-{\cfrac {a_{1}}{1+a_{1}-{\cfrac {a_{2}}{\cfrac {a_{2}(a_{3}+1)+1}{a_{3}+1}}}}}}}\\[8pt]&={\cfrac {a_{0}}{1-{\cfrac {a_{1}}{1+a_{1}-{\cfrac {a_{2}}{{\cfrac {a_{2}(a_{3}+1)}{a_{3}+1}}+{\cfrac {a_{3}+1}{a_{3}+1}}-{\cfrac {a_{3}}{a_{3}+1}}}}}}}}={\cfrac {a_{0}}{1-{\cfrac {a_{1}}{1+a_{1}-{\cfrac {a_{2}}{1+a_{2}-{\cfrac {a_{3}}{1+a_{3}}}}}}}}}\end{aligned}}}
Это можно применить к последовательности любой длины и, следовательно, применимо и в бесконечном случае.
Показательная функция e х представляет собой целую функцию с разложением в степенной ряд, которая сходится равномерно в каждой ограниченной области комплексной плоскости.
e
x
=
1
+
∑
n
=
1
∞
x
n
n
!
=
1
+
∑
n
=
1
∞
(
∏
i
=
1
n
x
i
)
{\displaystyle e^{x}=1+\sum _{n=1}^{\infty }{\frac {x^{n}}{n!}}=1+\sum _{n=1}^{\infty }\left(\prod _{i=1}^{n}{\frac {x}{i}}\right)\,}
Применение формулы непрерывной дроби Эйлера простое:
e
x
=
1
1
−
x
1
+
x
−
1
2
x
1
+
1
2
x
−
1
3
x
1
+
1
3
x
−
1
4
x
1
+
1
4
x
−
⋱
.
{\displaystyle e^{x}={\cfrac {1}{1-{\cfrac {x}{1+x-{\cfrac {{\frac {1}{2}}x}{1+{\frac {1}{2}}x-{\cfrac {{\frac {1}{3}}x}{1+{\frac {1}{3}}x-{\cfrac {{\frac {1}{4}}x}{1+{\frac {1}{4}}x-\ddots }}}}}}}}}}.\,}
Применяя преобразование эквивалентности , заключающееся в очистке дробей, этот пример упрощается до
e
x
=
1
1
−
x
1
+
x
−
x
2
+
x
−
2
x
3
+
x
−
3
x
4
+
x
−
⋱
{\displaystyle e^{x}={\cfrac {1}{1-{\cfrac {x}{1+x-{\cfrac {x}{2+x-{\cfrac {2x}{3+x-{\cfrac {3x}{4+x-\ddots }}}}}}}}}}\,}
и мы можем быть уверены, что эта цепная дробь сходится равномерно в каждой ограниченной области комплексной плоскости, поскольку она эквивалентна степенному ряду для e х .
Ряд Тейлора для главной ветви натурального логарифма в окрестности единицы хорошо известен:
log
(
1
+
x
)
=
x
−
x
2
2
+
x
3
3
−
x
4
4
+
⋯
=
∑
n
=
1
∞
(
−
1
)
n
+
1
z
n
n
.
{\displaystyle \log(1+x)=x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}-{\frac {x^{4}}{4}}+\cdots =\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}z^{n}}{n}}.\,}
Этот ряд сходится, когда | х | < 1 и также может быть выражен как сумма произведений: [ 3 ]
log
(
1
+
x
)
=
x
+
(
x
)
(
−
x
2
)
+
(
x
)
(
−
x
2
)
(
−
2
x
3
)
+
(
x
)
(
−
x
2
)
(
−
2
x
3
)
(
−
3
x
4
)
+
⋯
{\displaystyle \log(1+x)=x+(x)\left({\frac {-x}{2}}\right)+(x)\left({\frac {-x}{2}}\right)\left({\frac {-2x}{3}}\right)+(x)\left({\frac {-x}{2}}\right)\left({\frac {-2x}{3}}\right)\left({\frac {-3x}{4}}\right)+\cdots }
Применение формулы непрерывной дроби Эйлера к этому выражению показывает, что
log
(
1
+
x
)
=
x
1
−
−
x
2
1
+
−
x
2
−
−
2
x
3
1
+
−
2
x
3
−
−
3
x
4
1
+
−
3
x
4
−
⋱
{\displaystyle \log(1+x)={\cfrac {x}{1-{\cfrac {\frac {-x}{2}}{1+{\frac {-x}{2}}-{\cfrac {\frac {-2x}{3}}{1+{\frac {-2x}{3}}-{\cfrac {\frac {-3x}{4}}{1+{\frac {-3x}{4}}-\ddots }}}}}}}}}
и использование преобразования эквивалентности для очистки всех дробей приводит к
log
(
1
+
x
)
=
x
1
+
x
2
−
x
+
2
2
x
3
−
2
x
+
3
2
x
4
−
3
x
+
⋱
{\displaystyle \log(1+x)={\cfrac {x}{1+{\cfrac {x}{2-x+{\cfrac {2^{2}x}{3-2x+{\cfrac {3^{2}x}{4-3x+\ddots }}}}}}}}}
Эта непрерывная дробь сходится, когда | х | < 1, поскольку он эквивалентен ряду, из которого он был получен. [ 3 ]
Ряд Тейлора синусоидальной функции сходится на всей комплексной плоскости и может быть выражен как сумма произведений.
sin
x
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
x
2
n
+
1
=
x
−
x
3
3
!
+
x
5
5
!
−
x
7
7
!
+
x
9
9
!
−
⋯
=
x
+
(
x
)
(
−
x
2
2
⋅
3
)
+
(
x
)
(
−
x
2
2
⋅
3
)
(
−
x
2
4
⋅
5
)
+
(
x
)
(
−
x
2
2
⋅
3
)
(
−
x
2
4
⋅
5
)
(
−
x
2
6
⋅
7
)
+
⋯
{\displaystyle {\begin{aligned}\sin x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}&=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+{\frac {x^{9}}{9!}}-\cdots \\[8pt]&=x+(x)\left({\frac {-x^{2}}{2\cdot 3}}\right)+(x)\left({\frac {-x^{2}}{2\cdot 3}}\right)\left({\frac {-x^{2}}{4\cdot 5}}\right)+(x)\left({\frac {-x^{2}}{2\cdot 3}}\right)\left({\frac {-x^{2}}{4\cdot 5}}\right)\left({\frac {-x^{2}}{6\cdot 7}}\right)+\cdots \end{aligned}}}
Затем можно применить формулу непрерывной дроби Эйлера.
x
1
−
−
x
2
2
⋅
3
1
+
−
x
2
2
⋅
3
−
−
x
2
4
⋅
5
1
+
−
x
2
4
⋅
5
−
−
x
2
6
⋅
7
1
+
−
x
2
6
⋅
7
−
⋱
{\displaystyle {\cfrac {x}{1-{\cfrac {\frac {-x^{2}}{2\cdot 3}}{1+{\frac {-x^{2}}{2\cdot 3}}-{\cfrac {\frac {-x^{2}}{4\cdot 5}}{1+{\frac {-x^{2}}{4\cdot 5}}-{\cfrac {\frac {-x^{2}}{6\cdot 7}}{1+{\frac {-x^{2}}{6\cdot 7}}-\ddots }}}}}}}}}
Для очистки знаменателей используется преобразование эквивалентности:
sin
x
=
x
1
+
x
2
2
⋅
3
−
x
2
+
2
⋅
3
x
2
4
⋅
5
−
x
2
+
4
⋅
5
x
2
6
⋅
7
−
x
2
+
⋱
.
{\displaystyle \sin x={\cfrac {x}{1+{\cfrac {x^{2}}{2\cdot 3-x^{2}+{\cfrac {2\cdot 3x^{2}}{4\cdot 5-x^{2}+{\cfrac {4\cdot 5x^{2}}{6\cdot 7-x^{2}+\ddots }}}}}}}}.}
Тот же аргумент можно применить к функции косинуса :
cos
x
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
x
2
n
=
1
−
x
2
2
!
+
x
4
4
!
−
x
6
6
!
+
x
8
8
!
−
⋯
=
1
+
−
x
2
2
+
(
−
x
2
2
)
(
−
x
2
3
⋅
4
)
+
(
−
x
2
2
)
(
−
x
2
3
⋅
4
)
(
−
x
2
5
⋅
6
)
+
⋯
=
1
1
−
−
x
2
2
1
+
−
x
2
2
−
−
x
2
3
⋅
4
1
+
−
x
2
3
⋅
4
−
−
x
2
5
⋅
6
1
+
−
x
2
5
⋅
6
−
⋱
{\displaystyle {\begin{aligned}\cos x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}x^{2n}&=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}+{\frac {x^{8}}{8!}}-\cdots \\[8pt]&=1+{\frac {-x^{2}}{2}}+\left({\frac {-x^{2}}{2}}\right)\left({\frac {-x^{2}}{3\cdot 4}}\right)+\left({\frac {-x^{2}}{2}}\right)\left({\frac {-x^{2}}{3\cdot 4}}\right)\left({\frac {-x^{2}}{5\cdot 6}}\right)+\cdots \\[8pt]&={\cfrac {1}{1-{\cfrac {\frac {-x^{2}}{2}}{1+{\frac {-x^{2}}{2}}-{\cfrac {\frac {-x^{2}}{3\cdot 4}}{1+{\frac {-x^{2}}{3\cdot 4}}-{\cfrac {\frac {-x^{2}}{5\cdot 6}}{1+{\frac {-x^{2}}{5\cdot 6}}-\ddots }}}}}}}}\end{aligned}}}
∴
cos
x
=
1
1
+
x
2
2
−
x
2
+
2
x
2
3
⋅
4
−
x
2
+
3
⋅
4
x
2
5
⋅
6
−
x
2
+
⋱
.
{\displaystyle \therefore \cos x={\cfrac {1}{1+{\cfrac {x^{2}}{2-x^{2}+{\cfrac {2x^{2}}{3\cdot 4-x^{2}+{\cfrac {3\cdot 4x^{2}}{5\cdot 6-x^{2}+\ddots }}}}}}}}.}
Обратные тригонометрические функции можно представить в виде цепных дробей.
sin
−
1
x
=
∑
n
=
0
∞
(
2
n
−
1
)
!
!
(
2
n
)
!
!
⋅
x
2
n
+
1
2
n
+
1
=
x
+
(
1
2
)
x
3
3
+
(
1
⋅
3
2
⋅
4
)
x
5
5
+
(
1
⋅
3
⋅
5
2
⋅
4
⋅
6
)
x
7
7
+
⋯
=
x
+
x
(
x
2
2
⋅
3
)
+
x
(
x
2
2
⋅
3
)
(
(
3
x
)
2
4
⋅
5
)
+
x
(
x
2
2
⋅
3
)
(
(
3
x
)
2
4
⋅
5
)
(
(
5
x
)
2
6
⋅
7
)
+
⋯
=
x
1
−
x
2
2
⋅
3
1
+
x
2
2
⋅
3
−
(
3
x
)
2
4
⋅
5
1
+
(
3
x
)
2
4
⋅
5
−
(
5
x
)
2
6
⋅
7
1
+
(
5
x
)
2
6
⋅
7
−
⋱
{\displaystyle {\begin{aligned}\sin ^{-1}x=\sum _{n=0}^{\infty }{\frac {(2n-1)!!}{(2n)!!}}\cdot {\frac {x^{2n+1}}{2n+1}}&=x+\left({\frac {1}{2}}\right){\frac {x^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {x^{5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {x^{7}}{7}}+\cdots \\[8pt]&=x+x\left({\frac {x^{2}}{2\cdot 3}}\right)+x\left({\frac {x^{2}}{2\cdot 3}}\right)\left({\frac {(3x)^{2}}{4\cdot 5}}\right)+x\left({\frac {x^{2}}{2\cdot 3}}\right)\left({\frac {(3x)^{2}}{4\cdot 5}}\right)\left({\frac {(5x)^{2}}{6\cdot 7}}\right)+\cdots \\[8pt]&={\cfrac {x}{1-{\cfrac {\frac {x^{2}}{2\cdot 3}}{1+{\frac {x^{2}}{2\cdot 3}}-{\cfrac {\frac {(3x)^{2}}{4\cdot 5}}{1+{\frac {(3x)^{2}}{4\cdot 5}}-{\cfrac {\frac {(5x)^{2}}{6\cdot 7}}{1+{\frac {(5x)^{2}}{6\cdot 7}}-\ddots }}}}}}}}\end{aligned}}}
Преобразование эквивалентности дает
sin
−
1
x
=
x
1
−
x
2
2
⋅
3
+
x
2
−
2
⋅
3
(
3
x
)
2
4
⋅
5
+
(
3
x
)
2
−
4
⋅
5
(
5
x
2
)
6
⋅
7
+
(
5
x
2
)
−
⋱
.
{\displaystyle \sin ^{-1}x={\cfrac {x}{1-{\cfrac {x^{2}}{2\cdot 3+x^{2}-{\cfrac {2\cdot 3(3x)^{2}}{4\cdot 5+(3x)^{2}-{\cfrac {4\cdot 5(5x^{2})}{6\cdot 7+(5x^{2})-\ddots }}}}}}}}.}
Непрерывная дробь для обратного тангенса проста:
tan
−
1
x
=
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
2
n
+
1
=
x
−
x
3
3
+
x
5
5
−
x
7
7
+
⋯
=
x
+
x
(
−
x
2
3
)
+
x
(
−
x
2
3
)
(
−
3
x
2
5
)
+
x
(
−
x
2
3
)
(
−
3
x
2
5
)
(
−
5
x
2
7
)
+
⋯
=
x
1
−
−
x
2
3
1
+
−
x
2
3
−
−
3
x
2
5
1
+
−
3
x
2
5
−
−
5
x
2
7
1
+
−
5
x
2
7
−
⋱
=
x
1
+
x
2
3
−
x
2
+
(
3
x
)
2
5
−
3
x
2
+
(
5
x
)
2
7
−
5
x
2
+
⋱
.
{\displaystyle {\begin{aligned}\tan ^{-1}x=\sum _{n=0}^{\infty }(-1)^{n}{\frac {x^{2n+1}}{2n+1}}&=x-{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}-{\frac {x^{7}}{7}}+\cdots \\[8pt]&=x+x\left({\frac {-x^{2}}{3}}\right)+x\left({\frac {-x^{2}}{3}}\right)\left({\frac {-3x^{2}}{5}}\right)+x\left({\frac {-x^{2}}{3}}\right)\left({\frac {-3x^{2}}{5}}\right)\left({\frac {-5x^{2}}{7}}\right)+\cdots \\[8pt]&={\cfrac {x}{1-{\cfrac {\frac {-x^{2}}{3}}{1+{\frac {-x^{2}}{3}}-{\cfrac {\frac {-3x^{2}}{5}}{1+{\frac {-3x^{2}}{5}}-{\cfrac {\frac {-5x^{2}}{7}}{1+{\frac {-5x^{2}}{7}}-\ddots }}}}}}}}\\[8pt]&={\cfrac {x}{1+{\cfrac {x^{2}}{3-x^{2}+{\cfrac {(3x)^{2}}{5-3x^{2}+{\cfrac {(5x)^{2}}{7-5x^{2}+\ddots }}}}}}}}.\end{aligned}}}
Мы можем использовать предыдущий пример с обратным тангенсом, чтобы построить в виде цепной дроби представление числа π . Мы отмечаем, что
tan
−
1
(
1
)
=
π
4
,
{\displaystyle \tan ^{-1}(1)={\frac {\pi }{4}},}
А полагая x = 1 в предыдущем результате, сразу получаем
π
=
4
1
+
1
2
2
+
3
2
2
+
5
2
2
+
7
2
2
+
⋱
.
{\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{2+{\cfrac {3^{2}}{2+{\cfrac {5^{2}}{2+{\cfrac {7^{2}}{2+\ddots }}}}}}}}}}.\,}
Вспоминая связь между гиперболическими функциями и тригонометрическими функциями,
sin
i
x
=
i
sinh
x
{\displaystyle \sin ix=i\sinh x}
cos
i
x
=
cosh
x
,
{\displaystyle \cos ix=\cosh x,}
И это
i
2
=
−
1
,
{\displaystyle i^{2}=-1,}
следующие непрерывные дроби легко получить из приведенных выше:
sinh
x
=
x
1
−
x
2
2
⋅
3
+
x
2
−
2
⋅
3
x
2
4
⋅
5
+
x
2
−
4
⋅
5
x
2
6
⋅
7
+
x
2
−
⋱
{\displaystyle \sinh x={\cfrac {x}{1-{\cfrac {x^{2}}{2\cdot 3+x^{2}-{\cfrac {2\cdot 3x^{2}}{4\cdot 5+x^{2}-{\cfrac {4\cdot 5x^{2}}{6\cdot 7+x^{2}-\ddots }}}}}}}}}
cosh
x
=
1
1
−
x
2
2
+
x
2
−
2
x
2
3
⋅
4
+
x
2
−
3
⋅
4
x
2
5
⋅
6
+
x
2
−
⋱
.
{\displaystyle \cosh x={\cfrac {1}{1-{\cfrac {x^{2}}{2+x^{2}-{\cfrac {2x^{2}}{3\cdot 4+x^{2}-{\cfrac {3\cdot 4x^{2}}{5\cdot 6+x^{2}-\ddots }}}}}}}}.}
Обратные гиперболические функции связаны с обратными тригонометрическими функциями аналогично тому, как гиперболические функции связаны с тригонометрическими функциями:
sin
−
1
i
x
=
i
sinh
−
1
x
{\displaystyle \sin ^{-1}ix=i\sinh ^{-1}x}
tan
−
1
i
x
=
i
tanh
−
1
x
,
{\displaystyle \tan ^{-1}ix=i\tanh ^{-1}x,}
И эти непрерывные дроби легко выводятся:
sinh
−
1
x
=
x
1
+
x
2
2
⋅
3
−
x
2
+
2
⋅
3
(
3
x
)
2
4
⋅
5
−
(
3
x
)
2
+
4
⋅
5
(
5
x
2
)
6
⋅
7
−
(
5
x
2
)
+
⋱
{\displaystyle \sinh ^{-1}x={\cfrac {x}{1+{\cfrac {x^{2}}{2\cdot 3-x^{2}+{\cfrac {2\cdot 3(3x)^{2}}{4\cdot 5-(3x)^{2}+{\cfrac {4\cdot 5(5x^{2})}{6\cdot 7-(5x^{2})+\ddots }}}}}}}}}
tanh
−
1
x
=
x
1
−
x
2
3
+
x
2
−
(
3
x
)
2
5
+
3
x
2
−
(
5
x
)
2
7
+
5
x
2
−
⋱
.
{\displaystyle \tanh ^{-1}x={\cfrac {x}{1-{\cfrac {x^{2}}{3+x^{2}-{\cfrac {(3x)^{2}}{5+3x^{2}-{\cfrac {(5x)^{2}}{7+5x^{2}-\ddots }}}}}}}}.}
^ Леонард Эйлер (1748), «18», Введение в анализ бесконечно малых , т. 1, с. я
^ Х.С. Уолл, Аналитическая теория цепных дробей , D. Van Nostand Company, Inc., 1948; перепечатано (1973) издательством Chelsea Publishing Company. ISBN 0-8284-0207-8 , с. 17.
^ Перейти обратно: а б Этот ряд сходится при | х | < 1 по критерию Абеля (применённому к ряду для log(1 − x )).