Jump to content

Ансамблевое прогнозирование

Вверху : с помощью модели метеорологических исследований и прогнозирования Моделирование следов урагана «Рита» . Внизу : распространение Национального центра ураганов . многомодельного ансамблевого прогноза

Ансамблевое прогнозирование — это метод, используемый в численном прогнозировании погоды или в рамках него . Вместо единого прогноза наиболее вероятной погоды создается набор (или ансамбль) прогнозов. Этот набор прогнозов призван дать представление о диапазоне возможных будущих состояний атмосферы. Ансамбльное прогнозирование — это форма анализа Монте-Карло . Множественное моделирование проводится для учета двух обычных источников неопределенности в прогнозных моделях: (1) ошибок, вносимых использованием несовершенных начальных условий, усиливаемых хаотичным характером уравнений эволюции атмосферы, что часто называют как чувствительная зависимость от начальных условий ; и (2) ошибки, возникающие из-за несовершенства формулировки модели, например приближенных математических методов решения уравнений. В идеале проверенное будущее состояние атмосферы должно находиться в пределах прогнозируемого ансамблевого разброса , а величина разброса должна быть связана с неопределенностью (ошибкой) прогноза. В целом этот подход можно использовать для вероятностного прогнозирования любых динамическая система , и не только для прогнозирования погоды.

Экземпляры

[ редактировать ]

Сегодня ансамблевые прогнозы обычно делаются в большинстве основных средств оперативного прогнозирования погоды по всему миру, в том числе:

Экспериментальные ансамблевые прогнозы делаются в ряде университетов, таких как Вашингтонский университет, а ансамблевые прогнозы в США также составляются США ВМС и ВВС . Существуют различные способы просмотра данных, такие как диаграммы спагетти , средние значения ансамбля или почтовые марки , где можно сравнить ряд различных результатов запуска моделей.

Как предположил Эдвард Лоренц в 1963 году, с помощью долгосрочных прогнозов, сделанных более чем на две недели вперед, невозможно предсказать состояние атмосферы с какой-либо степенью квалификации из-за хаотичного характера задействованных уравнений гидродинамики . [1] Кроме того, существующие сети наблюдения имеют ограниченное пространственное и временное разрешение (например, над большими водоемами, такими как Тихий океан), что вносит неопределенность в истинное исходное состояние атмосферы. Хотя существует набор уравнений, известный как уравнения Лиувилля , для определения начальной неопределенности при инициализации модели, эти уравнения слишком сложны, чтобы их можно было запускать в реальном времени, даже с использованием суперкомпьютеров. [2] Практическая значимость ансамблевых прогнозов обусловлена ​​тем, что в хаотической и, следовательно, нелинейной системе скорость роста ошибки прогноза зависит от стартовых условий. Таким образом, ансамблевый прогноз обеспечивает априорную оценку предсказуемости, зависящей от состояния, т.е. оценку типов погоды, которые могут произойти, учитывая неизбежные неопределенности в начальных условиях прогноза и в точности вычислительного представления уравнений. Эти неопределенности ограничивают точность прогнозной модели примерно шестью днями вперед. [3] Первые оперативные ансамблевые прогнозы для субсезонных временных масштабов были подготовлены в 1985 году. [4] Однако стало понятно, что философия, лежащая в основе таких прогнозов, актуальна и для более коротких временных рамок – временных рамок, когда прогнозы ранее делались чисто детерминистическими методами.

Эдвард Эпштейн признал в 1969 году, что атмосферу невозможно полностью описать с помощью одного прогноза из-за присущей ей неопределенности, и предложил стохастическую динамическую модель, которая рассчитывала средние значения и отклонения для состояния атмосферы. [5] Хотя эти симуляции Монте-Карло показали мастерство, в 1974 году Сесил Лейт обнаружил, что они дают адекватные прогнозы только тогда, когда ансамблевое распределение вероятностей является репрезентативной выборкой распределения вероятностей в атмосфере. [6] Лишь в 1992 году ансамблевые прогнозы начали готовиться Европейским центром среднесрочных прогнозов погоды (ECMWF) и Национальными центрами экологического прогнозирования (NCEP).

Методы представления неопределенности

[ редактировать ]

Существует два основных источника неопределенности, которые необходимо учитывать при составлении ансамблевого прогноза погоды: неопределенность начальных условий и неопределенность модели. [7]

Неопределенность начального состояния

[ редактировать ]

Неопределенность начальных условий возникает из-за ошибок в оценке начальных условий прогноза, как из-за ограниченных наблюдений за атмосферой, так и из-за неопределенностей, связанных с использованием косвенных измерений, таких как спутниковые данные , для измерения состояния атмосферных переменных. Неопределенность начальных условий представлена ​​возмущением начальных условий между различными членами ансамбля. Это исследует диапазон начальных условий, соответствующих нашим знаниям о текущем состоянии атмосферы, а также о ее прошлой эволюции. Существует несколько способов создания этих возмущений начальных условий. Модель ECMWF, Система ансамблевого прогнозирования (EPS), [8] использует комбинацию сингулярных векторов и ансамбля ассимиляции данных (EDA) для моделирования начальной плотности вероятности . [9] Сингулярные векторные возмущения более активны во внетропиках, а возмущения ЭДА более активны в тропиках. Ансамбль NCEP, Глобальная система ансамблевого прогнозирования, использует метод, известный как селекция векторов . [10] [11]

Неопределенность модели

[ редактировать ]

Неопределенность модели возникает из-за ограничений прогнозной модели. Процесс представления атмосферы в компьютерной модели предполагает множество упрощений, таких как разработка схем параметризации , которые вносят ошибки в прогноз. Было предложено несколько методов представления неопределенности модели.

Схемы возмущенных параметров

[ редактировать ]

При разработке схемы параметризации вводится множество новых параметров для представления упрощенных физических процессов. Эти параметры могут быть очень неопределенными. Например, « коэффициент увлечения » представляет собой турбулентное смешивание сухого окружающего воздуха с конвективным облаком и, таким образом, представляет собой сложный физический процесс, используя одно число. В подходе с возмущенными параметрами идентифицируются неопределенные параметры в схемах параметризации модели, и их значения изменяются между членами ансамбля. Хотя в вероятностном моделировании климата, таком как Climateprediction.net , эти параметры часто остаются постоянными в глобальном масштабе и на протяжении всей интеграции. [12] в современном численном прогнозе погоды чаще встречается стохастическое изменение значений параметров во времени и пространстве. [13] Степень возмущения параметра можно определить с помощью экспертной оценки. [14] или путем прямой оценки степени неопределенности параметров для данной модели. [15]

Стохастическая параметризация

[ редактировать ]

Традиционная схема параметризации направлена ​​на представление среднего эффекта движения в масштабе подсетки (например, конвективных облаков) на состояние решенного масштаба (например, крупномасштабные поля температуры и ветра). Схема стохастической параметризации признает, что может существовать множество состояний масштаба подсетки, соответствующих конкретному разрешенному состоянию масштаба. Вместо прогнозирования наиболее вероятного движения в масштабе подсетки схема стохастической параметризации представляет собой одну из возможных реализаций подсетки. Это достигается за счет включения случайных чисел в уравнения движения. Это образцы распределения вероятностей, присвоенные неопределенным процессам. Стохастическая параметризация значительно улучшила качество моделей прогнозирования погоды и теперь используется в центрах оперативного прогнозирования по всему миру. [16] Стохастическая параметризация была впервые разработана в Европейском центре среднесрочных прогнозов погоды . [17]

Мультимодельные ансамбли

[ редактировать ]

Когда для создания прогноза используется множество различных моделей прогнозирования, такой подход называется многомодельным ансамблевым прогнозированием. Этот метод прогнозирования может улучшить прогнозы по сравнению с подходом, основанным на одной модели. [18] Когда модели в многомодельном ансамбле корректируются с учетом различных предубеждений, этот процесс известен как «прогнозирование суперансамбля». Этот тип прогноза значительно уменьшает ошибки в выходных данных модели. [19] Когда модели различных физических процессов объединяются, например, комбинации моделей атмосферы, океана и волн, мультимодельный ансамбль называется гиперансамблем. [20]

Оценка вероятности

[ редактировать ]

Ансамбльный прогноз обычно оценивается путем сравнения среднего ансамблевого значения отдельных прогнозов для одной прогнозируемой переменной с наблюдаемым значением этой переменной («ошибка»). Это сочетается с рассмотрением степени согласия между различными прогнозами в рамках ансамблевой системы, что представлено их общим стандартным отклонением или «разбросом». Распространение ансамбля можно визуализировать с помощью таких инструментов, как спагетти-диаграммы, которые показывают дисперсию одной величины на прогностических диаграммах для определенных временных шагов в будущем. Еще одним инструментом, в котором используется ансамблевый разброс, является метеограмма , которая показывает дисперсию прогноза одной величины для одного конкретного места. Обычно разброс по ансамблю слишком мал, так что наблюдаемое состояние атмосферы выходит за рамки прогноза по ансамблю. Это может привести к тому, что синоптик будет излишне самоуверен в своих прогнозах. [21] Эта проблема становится особенно серьезной для прогнозов погоды примерно на 10 дней вперед. [22] особенно если неопределенность модели не учтена в прогнозе.

Надежность и разрешение (калибровка и резкость)

[ редактировать ]

Разброс ансамблевого прогноза показывает, насколько уверен синоптик в своем прогнозе. Когда разброс по ансамблю невелик и прогнозные решения согласованы в рамках нескольких прогонов модели, синоптики чувствуют большую уверенность в прогнозе в целом. [21] Когда разброс велик, это указывает на большую неопределенность в прогнозе. В идеале должна существовать связь между разбросом и навыком , при которой разброс по ансамблю является хорошим предиктором ожидаемой ошибки в среднем по ансамблю. Если прогноз надежен , наблюдаемое состояние будет вести себя так, как если бы оно было получено из распределения вероятностей прогноза. Надежность (или калибровку ) можно оценить путем сравнения стандартного отклонения ошибки среднего значения ансамбля с разбросом прогноза: для надежного прогноза они должны совпадать как в разное время заблаговременности прогноза, так и для разных мест. [23]

Также можно оценить надежность прогнозов конкретного метеорологического явления. Например, если 30 из 50 членов указали, что в течение следующих 24 часов выпадет более 1 см осадков, вероятность превышения 1 см можно оценить в 60%. Прогноз будет считаться надежным, если с учетом всех ситуаций в прошлом, когда прогнозировалась вероятность 60%, в 60% этих случаев количество осадков действительно превышало 1 см. На практике вероятности, полученные на основе оперативных ансамблевых прогнозов погоды, не отличаются высокой надежностью, хотя с учетом набора прошлых прогнозов ( повторных или ретроспективных прогнозов ) и наблюдений оценки вероятности на основе ансамбля можно скорректировать для обеспечения большей надежности.

Еще одним желательным свойством ансамблевых прогнозов является разрешающая способность. Это показатель того, насколько прогноз отклоняется от частоты климатологических явлений – при условии, что ансамбль надежен, увеличение этого отклонения повысит полезность прогноза. Качество прогноза также можно рассматривать с точки зрения точности или того, насколько мал разброс прогноза. Ключевой целью прогнозиста должно быть максимальное повышение точности прогнозов при сохранении надежности. [24] Прогнозы с длинным опережением неизбежно не будут особенно точными (имеют особенно высокое разрешение), поскольку неизбежные (хотя и обычно небольшие) ошибки в исходных условиях будут расти с увеличением прогнозного опережения до тех пор, пока ожидаемая разница между двумя состояниями модели не станет такой же большой, как разница между двумя случайными состояниями из климатологии прогнозной модели.

Калибровка ансамблевых прогнозов

[ редактировать ]

Если ансамблевые прогнозы должны использоваться для прогнозирования вероятностей наблюдаемых погодных переменных, они обычно нуждаются в калибровке для создания несмещенных и надежных прогнозов. Для прогнозов температуры одним простым и эффективным методом калибровки является линейная регрессия , часто известная в этом контексте как статистика выходных данных модели . Модель линейной регрессии использует среднее значение ансамбля в качестве предсказателя реальной температуры, игнорирует распределение членов ансамбля вокруг среднего значения и прогнозирует вероятности, используя распределение остатков регрессии. В этой настройке калибровки ценность ансамбля для улучшения прогноза заключается в том, что среднее значение ансамбля обычно дает лучший прогноз, чем любой отдельный член ансамбля, а не из-за какой-либо информации, содержащейся в ширине или форме распределения членов в ансамбль вокруг среднего. обобщение линейной регрессии (теперь известное как негомогенная гауссова регрессия ). Однако в 2004 году было введено [25] который использует линейное преобразование разброса ансамбля для определения ширины прогнозируемого распределения, и было показано, что это может привести к прогнозам с более высокой точностью, чем прогнозы, основанные только на линейной регрессии. Это впервые доказало, что информация в виде распределения членов ансамбля вокруг среднего значения, в данном случае суммированного разбросом ансамбля, может использоваться для улучшения прогнозов по сравнению с линейной регрессией . Можно ли победить линейную регрессию, используя таким образом разброс по ансамблю, зависит от системы прогнозирования, прогнозируемой переменной и времени заблаговременности.

Прогнозирование размера прогнозируемых изменений

[ редактировать ]

Помимо использования для улучшения прогнозов неопределенности, разброс по ансамблю также можно использовать в качестве предсказателя вероятного размера изменений среднего прогноза от одного прогноза к другому. [26] Это работает, потому что в некоторых системах ансамблевого прогнозирования узкие ансамбли имеют тенденцию предшествовать небольшим изменениям среднего значения, тогда как широкие ансамбли имеют тенденцию предшествовать более крупным изменениям среднего значения. Это находит применение в торговых отраслях, для которых может быть важно понимание вероятных размеров будущих изменений прогнозов.

Скоординированные исследования

[ редактировать ]

Эксперимент по исследованию и прогнозированию систем наблюдений (ТОРПЭКС) — это 10-летняя международная программа исследований и разработок, направленная на ускорение повышения точности прогнозов погоды со значительными последствиями на срок от одного дня до двух недель на благо общества, экономики и окружающей среды. Он устанавливает организационную основу для решения проблем метеорологических исследований и прогнозирования, решение которых будет ускорено за счет международного сотрудничества между академическими учреждениями, центрами оперативных прогнозов и пользователями прогностической продукции.

Одним из его ключевых компонентов является интерактивный большой глобальный ансамбль ТОРПЭКС (ТИГГЕ), Всемирная программа исследований погоды, призванная ускорить повышение точности прогнозов погоды со значительными последствиями на срок от 1 дня до 2 недель на благо человечества. Централизованные архивы данных прогнозов ансамблевых моделей из многих международных центров используются для обеспечения широкого обмена данными и проведения исследований.

См. также

[ редактировать ]
  1. ^ Кокс, Джон Д. (2002). Наблюдатели за штормом . John Wiley & Sons, Inc., стр. 222–224 . ISBN  978-0-471-38108-2 .
  2. ^ Манусос, Питер (19 июля 2006 г.). «Системы ансамблевого прогнозирования» . Центр гидрометеорологических прогнозов . Проверено 31 декабря 2010 г.
  3. ^ Вейкманн, Клаус, Джефф Уитакер, Андрес Рубичек и Кэтрин Смит (01 декабря 2001 г.). Использование ансамблевых прогнозов для подготовки улучшенных среднесрочных (3–15 дней) прогнозов погоды. Центр климатической диагностики . Проверено 16 февраля 2007 г.
  4. ^ Палмер, Тим (2018). «Система ансамблевого прогнозирования ECMWF: взгляд назад (более) на 25 лет и прогноз на 25 лет вперед». Ежеквартальный журнал Королевского метеорологического общества . 145 (С1): 12–24. arXiv : 1803.06940 . Бибкод : 2019QJRMS.145S..12P . дои : 10.1002/qj.3383 . ISSN   1477-870X . S2CID   4944687 .
  5. ^ Эпштейн, ES (декабрь 1969 г.). «Стохастический динамический прогноз». Теллус А. 21 (6): 739–759. Бибкод : 1969Tell...21..739E . дои : 10.1111/j.2153-3490.1969.tb00483.x .
  6. ^ Лейт, CE (июнь 1974 г.). «Теоретическое мастерство прогнозов Монте-Карло» . Ежемесячный обзор погоды . 102 (6): 409–418. Бибкод : 1974MWRv..102..409L . doi : 10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2 . ISSN   1520-0493 .
  7. ^ Слинго, Джулия; Палмер, Тим (13 декабря 2011 г.). «Неопределенность в прогнозах погоды и климата» . Фил. Пер. Р. Сок. А. 369 (1956): 4751–4767. Бибкод : 2011RSPTA.369.4751S . дои : 10.1098/rsta.2011.0161 . ISSN   1364-503X . ПМК   3270390 . ПМИД   22042896 .
  8. ^ «Система ансамблевого прогнозирования (EPS)» . ЕЦСПП . Архивировано из оригинала 30 октября 2010 г. Проверено 5 января 2011 г.
  9. ^ «Количественная оценка неопределенности прогноза | ECMWF» . www.ecmwf.int . 29 ноября 2013 г. Проверено 20 ноября 2016 г.
  10. ^ Тот, Золтан; Калнай, Евгения (декабрь 1997 г.). «Ансамбльное прогнозирование в NCEP и метод размножения». Ежемесячный обзор погоды . 125 (12): 3297–3319. Бибкод : 1997MWRv..125.3297T . CiteSeerX   10.1.1.324.3941 . doi : 10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2 . ISSN   1520-0493 . S2CID   14668576 .
  11. ^ Молтени, Ф.; Буизза, Р.; Палмер, Теннесси ; Петролиагис, Т. (январь 1996 г.). «Система ансамблевого прогнозирования ECMWF: методология и проверка». Ежеквартальный журнал Королевского метеорологического общества . 122 (529): 73–119. Бибкод : 1996QJRMS.122...73M . дои : 10.1002/qj.49712252905 .
  12. ^ «Ансамбли возмущенной физики | Climateprediction.net» . www.climateprediction.net . Проверено 20 ноября 2016 г.
  13. ^ Маккейб, Энн; Суинбанк, Ричард; Теннант, Уоррен; Лок, Адриан (01 октября 2016 г.). «Представление неопределенности модели в ансамблевой системе прогнозирования с учетом конвекции Метеорологического бюро и ее влияние на прогнозирование тумана». Ежеквартальный журнал Королевского метеорологического общества . 142 (700): 2897–2910. Бибкод : 2016QJRMS.142.2897M . дои : 10.1002/qj.2876 . ISSN   1477-870X . S2CID   124729470 .
  14. ^ Оллинахо, Пиркка; Лок, Сара-Джейн; Лойтбехер, Мартин; Бехтольд, Питер; Беляарс, Антон; Боззо, Алессио; Форбс, Ричард М.; Хайден, Томас; Хоган, Робин Дж. (01 октября 2016 г.). «К представлению неопределенностей модели на уровне процесса: стохастически возмущенные параметризации в ансамбле ECMWF». Ежеквартальный журнал Королевского метеорологического общества . 143 (702): 408–422. Бибкод : 2017QJRMS.143..408O . дои : 10.1002/qj.2931 . ISSN   1477-870X . S2CID   125248441 .
  15. ^ Кристенсен, HM; Мороз, ИМ ; Палмер, Теннесси (04 февраля 2015 г.). «Стохастические и возмущенные представления параметров неопределенности модели при параметризации конвекции». Журнал атмосферных наук . 72 (6): 2525–2544. Бибкод : 2015JAtS...72.2525C . doi : 10.1175/JAS-D-14-0250.1 . ISSN   0022-4928 . S2CID   123117331 .
  16. ^ Бернер, Джудит; Ахац, Ульрих; Батте, Лориан; Бенгтссон, Лиза; Де Ла Камара, Альваро; Кристенсен, Ханна М.; Коланджели, Маттео; Коулман, Даниэль РБ; Кроммелин, Даан (19 июля 2016 г.). «Стохастическая параметризация: к новому взгляду на модели погоды и климата». Бюллетень Американского метеорологического общества . 98 (3): 565. arXiv : 1510.08682 . Бибкод : 2017BAMS...98..565B . дои : 10.1175/BAMS-D-15-00268.1 . ISSN   0003-0007 . S2CID   33134061 .
  17. ^ Буизза, Р.; Миллер, М.; Палмер, Теннесси (1 октября 1999 г.). «Стохастическое представление неопределенностей модели в системе ансамблевого прогнозирования ECMWF». Ежеквартальный журнал Королевского метеорологического общества . 125 (560): 2887–2908. Бибкод : 1999QJRMS.125.2887B . дои : 10.1002/qj.49712556006 . ISSN   1477-870X . S2CID   123346799 .
  18. ^ Чжоу, Бинбин и Цзюнь Ду (февраль 2010 г.). «Прогнозирование тумана на основе многомодельной мезомасштабной системы ансамблевого прогнозирования» (PDF) . Погода и прогнозирование . 25 (1): 303. Бибкод : 2010WtFor..25..303Z . дои : 10.1175/2009WAF2222289.1 . S2CID   4947206 . Проверено 2 января 2011 г.
  19. ^ Кейн, Д. и М. Милелли (12 февраля 2010 г.). «Мультимодельный суперансамбль для количественного прогноза осадков в регионе Пьемонте» . Природные опасности и науки о системе Земли . 10 (2): 265. Бибкод : 2010NHESS..10..265C . doi : 10.5194/nhess-10-265-2010 .
  20. ^ Ванденбулке, Л.; и др. (2009). «Методы суперансамбля: применение для прогнозирования дрейфа поверхности» (PDF) . Прогресс в океанографии . 82 (3): 149–167. Бибкод : 2009Proce..82..149V . дои : 10.1016/j.pocean.2009.06.002 .
  21. ^ Перейти обратно: а б Уорнер, Томас Томкинс (2010). Численный прогноз погоды и климата . Издательство Кембриджского университета . стр. 266–275. ISBN  978-0-521-51389-0 .
  22. ^ Палмер, Теннесси; Дж. Дж. Шаттс; Р. Хагедорн; Ф. Дж. Доблас-Рейес; Т. Юнг; М. Лойтбехер (май 2005 г.). «Представление неопределенности модели в прогнозировании погоды и климата». Ежегодный обзор наук о Земле и планетах . 33 : 163–193. Бибкод : 2005AREPS..33..163P . doi : 10.1146/annurev.earth.33.092203.122552 .
  23. ^ Лойтбехер, М.; Палмер, Теннесси (20 марта 2008 г.). «Ансамблевое прогнозирование». Журнал вычислительной физики . Прогнозирование погоды, климата и экстремальных явлений. 227 (7): 3515–3539. Бибкод : 2008JCoPh.227.3515L . дои : 10.1016/j.jcp.2007.02.014 .
  24. ^ Гнейтинг, Тильманн; Балабдауи, Фадуа; Рафтери, Адриан Э. (1 апреля 2007 г.). «Вероятностные прогнозы, калибровка и точность». Журнал Королевского статистического общества, серия B. 69 (2): 243–268. CiteSeerX   10.1.1.142.9002 . дои : 10.1111/j.1467-9868.2007.00587.x . S2CID   123181502 .
  25. ^ Джусон, С; Брикс, А; Циманн, К. (2004). «Новая параметрическая модель для оценки и калибровки среднесрочных ансамблевых прогнозов температуры». Письма об атмосферной науке . 5 (5): 96–102. arXiv : физика/0308057 . Бибкод : 2004AtScL...5...96J . дои : 10.1002/asl.69 . S2CID   118358858 .
  26. ^ Джусон, С; Циманн, К. (2004). «Использование ансамблевых прогнозов для прогнозирования размера изменений прогноза с применением к риску значения погодного свопа» . Письма об атмосферной науке . 4 (1–4): 15–27. дои : 10.1016/S1530-261X(03)00003-3 .

Дальнейшее чтение

[ редактировать ]
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 4a29133fad2d21fa6777167416bf8fb6__1717538220
URL1:https://arc.ask3.ru/arc/aa/4a/b6/4a29133fad2d21fa6777167416bf8fb6.html
Заголовок, (Title) документа по адресу, URL1:
Ensemble forecasting - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)