Оптическая беспроводная связь
Оптическая беспроводная связь ( OWC ) — это форма оптической связи , в которой неуправляемый видимый , инфракрасный (ИК) или ультрафиолетовый для передачи сигнала используется (УФ) свет. Обычно он используется для связи на близком расстоянии.
Системы OWC, работающие в видимом диапазоне (390–750 нм), обычно называют связью в видимом свете (VLC). В системах VLC используются светодиоды (LED), которые могут генерировать импульсы с очень высокой скоростью без заметного влияния на светоотдачу и человеческий глаз. VLC может использоваться в широком спектре приложений, включая, среди прочего, беспроводные локальные сети , беспроводные персональные сети и автомобильные сети . [1] С другой стороны, наземные двухточечные системы OWC, также известные как оптические системы свободного пространства (FSO), [2] работают на частотах ближнего ИК-диапазона (750–1600 нм). Эти системы обычно используют лазерные передатчики и предлагают экономичную, прозрачную для протоколов связь с высокими скоростями передачи данных , т. е. 10 Гбит/с на длину волны, и обеспечивают потенциальное решение узкого места в транспортной сети .
Также растет интерес к ультрафиолетовой связи (УФС) в результате недавнего прогресса в области твердотельных оптических источников/детекторов, работающих в солнечно-слепом УФ-спектре (200–280 нм). В этом так называемом глубоком УФ-диапазоне солнечное излучение на уровне земли незначительно, и это делает возможным создание детекторов счета фотонов с приемниками с широким полем зрения, которые увеличивают принимаемую энергию с небольшим дополнительным фоновым шумом. Такие конструкции особенно полезны для наружных конфигураций вне прямой видимости для поддержки маломощного UVC ближнего действия, например, в беспроводных датчиках и одноранговых сетях.
История
[ редактировать ]Технологии беспроводной связи получили широкое распространение и очень быстро стали необходимыми в течение последних нескольких десятилетий 20-го и начала 21-го века. Широкомасштабное внедрение радиочастотных технологий стало ключевым фактором в распространении беспроводных устройств и систем. Однако часть электромагнитного спектра, используемая беспроводными системами, ограничена по емкости, а лицензии на использование частей спектра стоят дорого. С развитием беспроводной связи с большим объемом данных спрос на радиочастотный спектр превышает предложение, что заставляет компании рассматривать варианты использования частей электромагнитного спектра, отличных от радиочастот.
Оптическая беспроводная связь (OWC) относится к передаче в неуправляемых средах распространения с использованием оптических носителей: видимого , инфракрасного (ИК) и ультрафиолетового (УФ) излучения. Сигнализацию посредством маяков , дыма , корабельных флагов и семафорного телеграфа можно считать историческими формами ВНК. [3] Солнечный свет также использовался для передачи сигналов на большие расстояния с очень давних времен. Самое раннее использование солнечного света для целей связи приписывают древним грекам и римлянам, которые использовали полированные щиты для передачи сигналов, отражая солнечный свет во время сражений. [4] В 1810 году Карл Фридрих Гаусс изобрел гелиограф, который использует пару зеркал для направления контролируемого луча солнечного света на далекую станцию. Хотя оригинальный гелиограф был разработан для геодезических исследований, в конце 19 — начале 20 века он широко использовался в военных целях. В 1880 году Александр Грэм Белл изобрел фотофон — первую в мире беспроводную телефонную систему.
Военный интерес к фотофонам продолжался и после Белла. Например, в 1935 году немецкая армия разработала фотофон, в котором в качестве источника света использовалась вольфрамовая лампа накаливания с ИК-фильтром. Также американские и немецкие военные лаборатории продолжали разработку дуговых ламп высокого давления для оптической связи до 1950-х годов. [5] Современный OWC использует в качестве передатчиков либо лазеры , либо светодиоды (светодиоды). В 1962 году лаборатория Линкольна Массачусетского технологического института построила экспериментальную линию связи OWC с использованием светодиода GaAs и смогла передавать телевизионные сигналы на расстояние 30 миль. После изобретения лазера предполагалось, что OWC станет основной областью применения лазеров, и было проведено множество испытаний с использованием различных типов лазеров и схем модуляции. [6] Однако результаты в целом оказались неутешительными из-за большой расходимости лазерных лучей и неспособности справиться с атмосферными воздействиями. С развитием оптоволокна с низкими потерями в 1970-х годах они стали очевидным выбором для оптической передачи на большие расстояния и сместили акцент с систем OWC.
Текущий статус
[ редактировать ]
На протяжении десятилетий интерес к OWC в основном ограничивался секретным военным применением. [7] и космические применения, включая межспутниковую связь и связь в дальнем космосе. [8] Проникновение OWC на массовый рынок до сих пор было ограничено, за исключением IrDA , который является весьма успешным решением беспроводной передачи данных на короткие расстояния. [ нужно обновить? ]
Приложения
[ редактировать ]Варианты OWC потенциально могут использоваться в самых разных коммуникационных приложениях, начиная от оптических межсоединений внутри интегральных схем и заканчивая наружными линиями связи между зданиями и заканчивая спутниковой связью.
OWC можно разделить на пять категорий в зависимости от дальности передачи:
- Сверхкороткая дальность : связь между чипами в сложенных и плотно упакованных многочиповых корпусах. [9]
- Короткая дальность : беспроводной нательной сети (WBAN) и беспроводной персональной сети (WPAN) в соответствии со стандартом IEEE 802.15.7, подводная связь. приложения [10] [11]
- Средний радиус действия : связь внутри помещений ИК- и видимым светом (VLC) для беспроводных локальных сетей (WLAN), а также связь между транспортными средствами и между транспортными средствами и инфраструктурой.
- Большой радиус действия : соединения между зданиями, также называемые оптической связью в свободном пространстве (FSO).
- Сверхдальняя дальность : Лазерная связь в космосе, особенно для межспутниковой связи и создания спутниковых группировок .
Последние тенденции
[ редактировать ]- В январе 2015 года IEEE 802.15 сформировал рабочую группу для написания версии IEEE 802.15.7-2011, которая учитывает инфракрасные и ближние ультрафиолетовые длины волн в дополнение к видимому свету и добавляет такие опции, как связь с оптической камерой и LiFi. [12]
- В приложениях OWC на большие расстояния была продемонстрирована связь между землей и воздушным судном со скоростью 1 Гбит/с - 60 км на скорости 800 км/ч . км/ч », DLR и EADS, декабрь 2013 г.
- На потребительских устройствах и приложениях OWC ближнего радиуса действия на телефонах; Заряжайте и получайте данные с помощью света на своем смартфоне : TCL Communication/ALCATEL ONETOUCH и Sunpartner Technologies объявляют о выпуске первого полностью интегрированного смартфона с солнечной батареей. Март 2014.
- В рамках приложений OWC сверхдальнего радиуса действия демонстрационная программа лунной лазерной связи НАСА (LLCD) передала данные с лунной орбиты на Землю со скоростью 622 мегабита в секунду (Мбит/с), ноябрь 2013 года.
- Следующее поколение OWC/Visible Light Communications продемонстрировало передачу со скоростью 10 Мбит/с с использованием полимерных светоизлучающих диодов или OLED. [13]
- В области исследовательской деятельности OWC действует европейский исследовательский проект IC1101 OPTICWISE программы COST (Европейское сотрудничество в области науки и технологий), финансируемый Европейским научным фондом, что позволяет координировать исследования, финансируемые из национальных источников, на европейском уровне. Цель акции – стать высококлассной консолидированной европейской научной платформой для междисциплинарной исследовательской деятельности в области оптической беспроводной связи (OWC). Он был запущен в ноябре 2011 года и продлится до ноября 2015 года. Представлено более 20 стран.
- Внедрение потребительских и промышленных технологий OWC представлено Консорциумом Li-Fi , основанным в 2011 году и представляющим собой некоммерческую организацию, занимающуюся внедрением оптических беспроводных технологий. Способствует внедрению продуктов Light Fidelity (Li-Fi).
- Примером осведомленности азиатов о OWC является консорциум связи видимого света VLCC в Японии, созданный в 2007 году с целью создания безопасной, повсеместной системы электросвязи с использованием видимого света посредством исследований рынка, продвижения и стандартизации.
- В США существует несколько инициатив OWC, в том числе «Исследовательский центр интеллектуального освещения», основанный в 2008 году Национальным научным фондом (NSF) и являющийся партнерством Политехнического института Ренсселера (ведущее учреждение), Бостонского университета и Университета Нью-Мексико. . Партнерами по информационно-пропагандистской деятельности являются Университет Говарда , Государственный университет Моргана и Технологический институт Роуз-Халмана . [14]
- В июле 2023 года IEEE выпустил 802.11bb , создав стандарт для оптических сетей прямой видимости в диапазоне 800–1000 нм.
Ссылки
[ редактировать ]- ^ М. Уйсал и Х. Нури, «Оптическая беспроводная связь – новая технология», 16-я Международная конференция по прозрачным оптическим сетям (ICTON), Грац, Австрия, июль 2014 г.
- ^ Али Халиги, Мохаммед; Уйсал, Мурат (2014). «Обзор оптической связи в свободном пространстве: взгляд на теорию связи» . Опросы и учебные пособия IEEE по коммуникациям . 16 (4): 2231–2258. дои : 10.1109/COMST.2014.2329501 . S2CID 3141460 .
- ^ А. А. Хуурдеман, Всемирная история телекоммуникаций , Wiley Interscience, 2003.
- ^ Г. Дж. Хольцманн и Б. Персон, Ранняя история сетей передачи данных (перспективы), Wiley, 1994.
- ^ М. Грот, « Возвращение к фотофонам ».
- ^ Э. Гудвин, « Обзор операционных систем лазерной связи », Труды IEEE , том. 58, нет. 10, стр. 1746–1752, октябрь 1970 г.
- ^ DL Бегли, « Лазерная связь в свободном пространстве: историческая перспектива », Ежегодное собрание IEEE, Общества лазеров и электрооптики (LEOS) , том. 2, стр. 391–392, ноябрь 2002 г., Глазго, Шотландия.
- ^ Х. Хеммати, Оптическая связь в дальнем космосе , Wiley-Interscience, 2006 г.
- ^ Качрис, Христофорос; Томкос, Иоаннис (октябрь 2012 г.). «Обзор оптических межсоединений для центров обработки данных». Опросы и учебные пособия IEEE по коммуникациям . 14 (4): 1021–1036. дои : 10.1109/SURV.2011.122111.00069 . S2CID 1771021 .
- ^ Бховал, А.; Кшетримаюм, РС (2018). «Анализ характеристик одностороннего и двустороннего реле для подводной оптической беспроводной связи» . ОСА Континуум . 1 (4): 1400–1413. дои : 10.1364/OSAC.1.001400 .
- ^ Хэнсон, Ф.; Радич, С. (январь 2008 г.). «Высокополосная подводная оптическая связь». Прикладная оптика . 47 (2): 277–83. Бибкод : 2008ApOpt..47..277H . дои : 10.1364/AO.47.000277 . ПМИД 18188210 .
- ^ Целевая группа по коммуникациям (TG 7m) (31 мая 2019 г.). «15.7 Техническое обслуживание: оптическая беспроводная связь ближнего действия» . IEEE 802.15 WPANTM . Проверено 31 мая 2019 г.
{{cite web}}
: CS1 maint: числовые имена: список авторов ( ссылка ) - ^ Пол Энтони Хэй; Франческо Баузи; Забих Гассемлой; Иоаннис Папаконстантину; Хоа Ле Минь; Шарлотта Флешон; Франко Качиалли (2014). «Видимая световая связь: канал связи в реальном времени со скоростью 10 Мбит/с с низкопропускным полимерным светодиодом» . Оптика Экспресс . 22 (3): 2830–8. Бибкод : 2014OExpr..22.2830H . дои : 10.1364/OE.22.002830 . ПМИД 24663574 .
- ^ Исследовательский центр интеллектуального освещения.
Дальнейшее чтение
[ редактировать ]- Даукантас, Патрисия (март 2014 г.). «Оптическая беспроводная связь: новая горячая точка» (PDF) . Новости оптики и фотоники . 25 (3): 34–41. Бибкод : 2014OptPN..25...34D . дои : 10.1364/ОПН.25.3.000034 .
- Арнон, Шломи; и др., ред. (2012). Передовые оптические системы беспроводной связи (1-е изд.). Кембридж: Издательство Кембриджского университета. дои : 10.1017/CBO9780511979187 . ISBN 9780511979187 .
- Гассемлой, З.; Попула, В.; Раджбхандари, С. (2012). Оптическая беспроводная связь: моделирование системы и каналов с помощью MATLAB (1-е изд.). Бока-Ратон, Флорида: CRC Press, Inc. ISBN 9781439851883 .