Statistical physics approach
Статистика Каниадакиса (также известная как κ-статистика ) представляет собой обобщение статистической механики Больцмана-Гиббса . [1] основанный на релятивистском [2] [3] [4] обобщение классической энтропии Больцмана-Гиббса-Шеннона (обычно называемой энтропией Каниадакиса или κ-энтропией). Представлен греко-итальянским физиком Джорджио Каниадакисом в 2001 году. [5] κ-статистическая механика сохраняет основные черты обычной статистической механики и в последние годы привлекла интерес многих исследователей. κ-распределение в настоящее время считается одним из наиболее жизнеспособных кандидатов для объяснения сложных физических , [6] [7] естественные или искусственные системы, включающие статистические степенные распределения . Статистика Каниадакиса успешно применяется при описании множества систем в области космологии , астрофизики , [8] [9] конденсированное вещество , квантовая физика , [10] [11] сейсмология , [12] [13] геномика , [14] [15] экономика , [16] [17] эпидемиология , [18] и многие другие.
Математический формализм κ-статистики порождается κ-деформированными функциями, особенно κ-экспоненциальной функцией.
График κ-экспоненциальной функции exp κ ( x ) {\displaystyle \exp _{\kappa }(x)} для трех разных значений κ. Сплошная черная кривая, соответствующая обычной показательной функции. exp ( x ) {\displaystyle \exp(x)} ( κ = 0 {\displaystyle \kappa =0} ). Экспоненциальная (или κ-экспоненциальная) функция Каниадакиса представляет собой однопараметрическое обобщение экспоненциальной функции, определяемое формулой:
exp κ ( x ) = { ( 1 + κ 2 x 2 + κ x ) 1 κ if 0 < κ < 1. exp ( x ) if κ = 0 , {\displaystyle \exp _{\kappa }(x)={\begin{cases}{\Big (}{\sqrt {1+\kappa ^{2}x^{2}}}+\kappa x{\Big )}^{\frac {1}{\kappa }}&{\text{if }}0<\kappa <1.\\[6pt]\exp(x)&{\text{if }}\kappa =0,\\[8pt]\end{cases}}} с exp − κ ( x ) = exp κ ( x ) {\displaystyle \exp _{-\kappa }(x)=\exp _{\kappa }(x)} .
κ-экспонента для 0 < κ < 1 {\displaystyle 0<\kappa <1} также можно записать в виде:
exp κ ( x ) = exp ( 1 κ arcsinh ( κ x ) ) . {\displaystyle \exp _{\kappa }(x)=\exp {\Bigg (}{\frac {1}{\kappa }}{\text{arcsinh}}(\kappa x){\Bigg )}.} Первые пять членов Тейлора разложения exp κ ( x ) {\displaystyle \exp _{\kappa }(x)} даны:
exp κ ( x ) = 1 + x + x 2 2 + ( 1 − κ 2 ) x 3 3 ! + ( 1 − 4 κ 2 ) x 4 4 ! + ⋯ {\displaystyle \exp _{\kappa }(x)=1+x+{\frac {x^{2}}{2}}+(1-\kappa ^{2}){\frac {x^{3}}{3!}}+(1-4\kappa ^{2}){\frac {x^{4}}{4!}}+\cdots }
где первые три такие же, как типичная показательная функция .
Основные свойства
κ-экспоненциальная функция обладает следующими свойствами показательной функции:
exp κ ( x ) ∈ C ∞ ( R ) {\displaystyle \exp _{\kappa }(x)\in \mathbb {C} ^{\infty }(\mathbb {R} )} d d x exp κ ( x ) > 0 {\displaystyle {\frac {d}{dx}}\exp _{\kappa }(x)>0} d 2 d x 2 exp κ ( x ) > 0 {\displaystyle {\frac {d^{2}}{dx^{2}}}\exp _{\kappa }(x)>0} exp κ ( − ∞ ) = 0 + {\displaystyle \exp _{\kappa }(-\infty )=0^{+}} exp κ ( 0 ) = 1 {\displaystyle \exp _{\kappa }(0)=1} exp κ ( + ∞ ) = + ∞ {\displaystyle \exp _{\kappa }(+\infty )=+\infty } exp κ ( x ) exp κ ( − x ) = − 1 {\displaystyle \exp _{\kappa }(x)\exp _{\kappa }(-x)=-1} Для реального числа r {\displaystyle r} , κ-экспонента обладает свойством:
[ exp κ ( x ) ] r = exp κ / r ( r x ) {\displaystyle {\Big [}\exp _{\kappa }(x){\Big ]}^{r}=\exp _{\kappa /r}(rx)} . График κ-логарифмической функции ln κ ( x ) {\displaystyle \ln _{\kappa }(x)} для трех разных значений κ. Сплошная черная кривая, соответствующая обычной логарифмической функции. ln ( x ) {\displaystyle \ln(x)} ( κ = 0 {\displaystyle \kappa =0} ). Логарифм Каниадакиса (или κ-логарифм) представляет собой релятивистское однопараметрическое обобщение обычной функции логарифма:
ln κ ( x ) = { x κ − x − κ 2 κ if 0 < κ < 1 , ln ( x ) if κ = 0 , {\displaystyle \ln _{\kappa }(x)={\begin{cases}{\frac {x^{\kappa }-x^{-\kappa }}{2\kappa }}&{\text{if }}0<\kappa <1,\\[8pt]\ln(x)&{\text{if }}\kappa =0,\\[8pt]\end{cases}}} с ln − κ ( x ) = ln κ ( x ) {\displaystyle \ln _{-\kappa }(x)=\ln _{\kappa }(x)} , которая является обратной функцией κ-экспоненты:
ln κ ( exp κ ( x ) ) = exp κ ( ln κ ( x ) ) = x . {\displaystyle \ln _{\kappa }{\Big (}\exp _{\kappa }(x){\Big )}=\exp _{\kappa }{\Big (}\ln _{\kappa }(x){\Big )}=x.} κ-логарифм для 0 < κ < 1 {\displaystyle 0<\kappa <1} также можно записать в виде:
ln κ ( x ) = 1 κ sinh ( κ ln ( x ) ) {\displaystyle \ln _{\kappa }(x)={\frac {1}{\kappa }}\sinh {\Big (}\kappa \ln(x){\Big )}}
Первые три члена Тейлора разложения ln κ ( x ) {\displaystyle \ln _{\kappa }(x)} даны:
ln κ ( 1 + x ) = x − x 2 2 + ( 1 + κ 2 2 ) x 3 3 − ⋯ {\displaystyle \ln _{\kappa }(1+x)=x-{\frac {x^{2}}{2}}+\left(1+{\frac {\kappa ^{2}}{2}}\right){\frac {x^{3}}{3}}-\cdots } следуя правилу
ln κ ( 1 + x ) = ∑ n = 1 ∞ b n ( κ ) ( − 1 ) n − 1 x n n {\displaystyle \ln _{\kappa }(1+x)=\sum _{n=1}^{\infty }b_{n}(\kappa )\,(-1)^{n-1}\,{\frac {x^{n}}{n}}} с b 1 ( κ ) = 1 {\displaystyle b_{1}(\kappa )=1} , и
b n ( κ ) ( x ) = { 1 if n = 1 , 1 2 ( 1 − κ ) ( 1 − κ 2 ) . . . ( 1 − κ n − 1 ) , + 1 2 ( 1 + κ ) ( 1 + κ 2 ) . . . ( 1 + κ n − 1 ) for n > 1 , {\displaystyle b_{n}(\kappa )(x)={\begin{cases}1&{\text{if }}n=1,\\[8pt]{\frac {1}{2}}{\Big (}1-\kappa {\Big )}{\Big (}1-{\frac {\kappa }{2}}{\Big )}...{\Big (}1-{\frac {\kappa }{n-1}}{\Big )},\,+\,{\frac {1}{2}}{\Big (}1+\kappa {\Big )}{\Big (}1+{\frac {\kappa }{2}}{\Big )}...{\Big (}1+{\frac {\kappa }{n-1}}{\Big )}&{\text{for }}n>1,\\[8pt]\end{cases}}} где b n ( 0 ) = 1 {\displaystyle b_{n}(0)=1} и b n ( − κ ) = b n ( κ ) {\displaystyle b_{n}(-\kappa )=b_{n}(\kappa )} . Два первых члена Тейлора разложения ln κ ( x ) {\displaystyle \ln _{\kappa }(x)} аналогичны обычной логарифмической функции .
Основные свойства
κ-логарифмическая функция обладает следующими свойствами логарифмической функции:
ln κ ( x ) ∈ C ∞ ( R + ) {\displaystyle \ln _{\kappa }(x)\in \mathbb {C} ^{\infty }(\mathbb {R} ^{+})} d d x ln κ ( x ) > 0 {\displaystyle {\frac {d}{dx}}\ln _{\kappa }(x)>0} d 2 d x 2 ln κ ( x ) < 0 {\displaystyle {\frac {d^{2}}{dx^{2}}}\ln _{\kappa }(x)<0} ln κ ( 0 + ) = − ∞ {\displaystyle \ln _{\kappa }(0^{+})=-\infty } ln κ ( 1 ) = 0 {\displaystyle \ln _{\kappa }(1)=0} ln κ ( + ∞ ) = + ∞ {\displaystyle \ln _{\kappa }(+\infty )=+\infty } ln κ ( 1 / x ) = − ln κ ( x ) {\displaystyle \ln _{\kappa }(1/x)=-\ln _{\kappa }(x)} Для реального числа r {\displaystyle r} , κ-логарифм обладает свойством:
ln κ ( x r ) = r ln r κ ( x ) {\displaystyle \ln _{\kappa }(x^{r})=r\ln _{r\kappa }(x)} Для любого x , y ∈ R {\displaystyle x,y\in \mathbb {R} } и | κ | < 1 {\displaystyle |\kappa |<1} , сумма Каниадакиса (или κ-сумма) определяется следующим законом композиции:
x ⊕ κ y = x 1 + κ 2 y 2 + y 1 + κ 2 x 2 {\displaystyle x{\stackrel {\kappa }{\oplus }}y=x{\sqrt {1+\kappa ^{2}y^{2}}}+y{\sqrt {1+\kappa ^{2}x^{2}}}} , это также можно записать в форме:
x ⊕ κ y = 1 κ sinh ( a r c s i n h ( κ x ) + a r c s i n h ( κ y ) ) {\displaystyle x{\stackrel {\kappa }{\oplus }}y={1 \over \kappa }\,\sinh \left({\rm {arcsinh}}\,(\kappa x)\,+\,{\rm {arcsinh}}\,(\kappa y)\,\right)} , где обычная сумма является частным случаем классического предела κ → 0 {\displaystyle \kappa \rightarrow 0} : x ⊕ 0 y = x + y {\displaystyle x{\stackrel {0}{\oplus }}y=x+y} .
κ-сумма, как и обычная сумма, обладает следующими свойствами:
1. associativity: ( x ⊕ κ y ) ⊕ κ z = x ⊕ κ ( y ⊕ κ z ) {\displaystyle {\text{1. associativity:}}\quad (x{\stackrel {\kappa }{\oplus }}y){\stackrel {\kappa }{\oplus }}z=x{\stackrel {\kappa }{\oplus }}(y{\stackrel {\kappa }{\oplus }}z)} 2. neutral element: x ⊕ κ 0 = 0 ⊕ κ x = x {\displaystyle {\text{2. neutral element:}}\quad x{\stackrel {\kappa }{\oplus }}0=0{\stackrel {\kappa }{\oplus }}x=x} 3. opposite element: x ⊕ κ ( − x ) = ( − x ) ⊕ κ x = 0 {\displaystyle {\text{3. opposite element:}}\quad x{\stackrel {\kappa }{\oplus }}(-x)=(-x){\stackrel {\kappa }{\oplus }}x=0} 4. commutativity: x ⊕ κ y = y ⊕ κ x {\displaystyle {\text{4. commutativity:}}\quad x{\stackrel {\kappa }{\oplus }}y=y{\stackrel {\kappa }{\oplus }}x} κ-разница ⊖ κ {\displaystyle {\stackrel {\kappa }{\ominus }}} дается x ⊖ κ y = x ⊕ κ ( − y ) {\displaystyle x{\stackrel {\kappa }{\ominus }}y=x{\stackrel {\kappa }{\oplus }}(-y)} .
Фундаментальное свойство exp κ ( − x ) exp κ ( x ) = 1 {\displaystyle \exp _{\kappa }(-x)\exp _{\kappa }(x)=1} возникает как частный случай более общего выражения, приведенного ниже: exp κ ( x ) exp κ ( y ) = e x p κ ( x ⊕ κ y ) {\displaystyle \exp _{\kappa }(x)\exp _{\kappa }(y)=exp_{\kappa }(x{\stackrel {\kappa }{\oplus }}y)}
Кроме того, κ-функции и κ-сумма представляют собой следующие соотношения:
ln κ ( x y ) = ln κ ( x ) ⊕ κ ln κ ( y ) {\displaystyle \ln _{\kappa }(x\,y)=\ln _{\kappa }(x){\stackrel {\kappa }{\oplus }}\ln _{\kappa }(y)} Для любого x , y ∈ R {\displaystyle x,y\in \mathbb {R} } и | κ | < 1 {\displaystyle |\kappa |<1} , произведение Каниадакиса (или κ-произведение) определяется следующим законом композиции:
x ⊗ κ y = 1 κ sinh ( 1 κ a r c s i n h ( κ x ) a r c s i n h ( κ y ) ) {\displaystyle x{\stackrel {\kappa }{\otimes }}y={1 \over \kappa }\,\sinh \left(\,{1 \over \kappa }\,\,{\rm {arcsinh}}\,(\kappa x)\,\,{\rm {arcsinh}}\,(\kappa y)\,\right)} , где обычное произведение является частным случаем классического предела κ → 0 {\displaystyle \kappa \rightarrow 0} : x ⊗ 0 y = x × y = x y {\displaystyle x{\stackrel {0}{\otimes }}y=x\times y=xy} .
κ-произведение, как и обычное произведение, обладает следующими свойствами:
1. associativity: ( x ⊗ κ y ) ⊗ κ z = x ⊗ κ ( y ⊗ κ z ) {\displaystyle {\text{1. associativity:}}\quad (x{\stackrel {\kappa }{\otimes }}y){\stackrel {\kappa }{\otimes }}z=x{\stackrel {\kappa }{\otimes }}(y{\stackrel {\kappa }{\otimes }}z)} 2. neutral element: x ⊗ κ I = I ⊗ κ x = x for I = κ − 1 sinh κ ⊕ κ x = x {\displaystyle {\text{2. neutral element:}}\quad x{\stackrel {\kappa }{\otimes }}I=I{\stackrel {\kappa }{\otimes }}x=x\quad {\text{for}}\quad I=\kappa ^{-1}\sinh \kappa {\stackrel {\kappa }{\oplus }}x=x} 3. inverse element: x ⊗ κ x ¯ = x ¯ ⊗ κ x = I for x ¯ = κ − 1 sinh ( κ 2 / a r c s i n h ( κ x ) ) {\displaystyle {\text{3. inverse element:}}\quad x{\stackrel {\kappa }{\otimes }}{\overline {x}}={\overline {x}}{\stackrel {\kappa }{\otimes }}x=I\quad {\text{for}}\quad {\overline {x}}=\kappa ^{-1}\sinh(\kappa ^{2}/{\rm {arcsinh}}\,(\kappa x))} 4. commutativity: x ⊗ κ y = y ⊗ κ x {\displaystyle {\text{4. commutativity:}}\quad x{\stackrel {\kappa }{\otimes }}y=y{\stackrel {\kappa }{\otimes }}x} κ-деление ⊘ κ {\displaystyle {\stackrel {\kappa }{\oslash }}} дается x ⊘ κ y = x ⊗ κ y ¯ {\displaystyle x{\stackrel {\kappa }{\oslash }}y=x{\stackrel {\kappa }{\otimes }}{\overline {y}}} .
κ-сумма ⊕ κ {\displaystyle {\stackrel {\kappa }{\oplus }}} и κ-произведение ⊗ κ {\displaystyle {\stackrel {\kappa }{\otimes }}} подчиняются распределительному закону: z ⊗ κ ( x ⊕ κ y ) = ( z ⊗ κ x ) ⊕ κ ( z ⊗ κ y ) {\displaystyle z{\stackrel {\kappa }{\otimes }}(x{\stackrel {\kappa }{\oplus }}y)=(z{\stackrel {\kappa }{\otimes }}x){\stackrel {\kappa }{\oplus }}(z{\stackrel {\kappa }{\otimes }}y)} .
Фундаментальное свойство ln κ ( 1 / x ) = − ln κ ( x ) {\displaystyle \ln _{\kappa }(1/x)=-\ln _{\kappa }(x)} возникает как частный случай более общего выражения, приведенного ниже:
ln κ ( x y ) = ln κ ( x ) ⊕ κ ln κ ( y ) {\displaystyle \ln _{\kappa }(x\,y)=\ln _{\kappa }(x){\stackrel {\kappa }{\oplus }}\ln _{\kappa }(y)} Кроме того, κ-функции и κ-произведение представляют следующие отношения: exp κ ( x ) ⊗ κ exp κ ( y ) = exp κ ( x + y ) {\displaystyle \exp _{\kappa }(x){\stackrel {\kappa }{\otimes }}\exp _{\kappa }(y)=\exp _{\kappa }(x\,+\,y)} ln κ ( x ⊗ κ y ) = ln κ ( x ) + ln κ ( y ) {\displaystyle \ln _{\kappa }(x\,{\stackrel {\kappa }{\otimes }}\,y)=\ln _{\kappa }(x)+\ln _{\kappa }(y)} Дифференциал Каниадакиса (или κ-дифференциал) x {\displaystyle x} определяется:
d κ x = d x 1 + κ 2 x 2 {\displaystyle \mathrm {d} _{\kappa }x={\frac {\mathrm {d} \,x}{\displaystyle {\sqrt {1+\kappa ^{2}\,x^{2}}}}}} . Итак, κ-производная функции f ( x ) {\displaystyle f(x)} связана с производной Лейбница через:
d f ( x ) d κ x = γ κ ( x ) d f ( x ) d x {\displaystyle {\frac {\mathrm {d} f(x)}{\mathrm {d} _{\kappa }x}}=\gamma _{\kappa }(x){\frac {\mathrm {d} f(x)}{\mathrm {d} x}}} , где γ κ ( x ) = 1 + κ 2 x 2 {\displaystyle \gamma _{\kappa }(x)={\sqrt {1+\kappa ^{2}x^{2}}}} является фактором Лоренца. Обыкновенная производная d f ( x ) d x {\displaystyle {\frac {\mathrm {d} f(x)}{\mathrm {d} x}}} является частным случаем κ-производной d f ( x ) d κ x {\displaystyle {\frac {\mathrm {d} f(x)}{\mathrm {d} _{\kappa }x}}} в классическом пределе κ → 0 {\displaystyle \kappa \rightarrow 0} .
Интеграл Каниадакиса (или κ-интеграл) — это обратный оператор κ-производной, определяемой через
∫ d κ x f ( x ) = ∫ d x 1 + κ 2 x 2 f ( x ) {\displaystyle \int \mathrm {d} _{\kappa }x\,\,f(x)=\int {\frac {\mathrm {d} \,x}{\sqrt {1+\kappa ^{2}\,x^{2}}}}\,\,f(x)} , который восстанавливает обычный интеграл в классическом пределе κ → 0 {\displaystyle \kappa \rightarrow 0} .
[нажмите на рисунок] График функций κ-синус и κ-косинус для κ = 0 {\displaystyle \kappa =0} (черная кривая) и κ = 0.1 {\displaystyle \kappa =0.1} (синяя кривая). Циклическая тригонометрия Каниадакиса (или κ-циклическая тригонометрия) основана на функциях κ-циклического синуса (или κ-синуса) и κ-циклического косинуса (или κ-косинуса), определяемых следующим образом:
sin κ ( x ) = exp κ ( i x ) − exp κ ( − i x ) 2 i {\displaystyle \sin _{\kappa }(x)={\frac {\exp _{\kappa }(ix)-\exp _{\kappa }(-ix)}{2i}}} , cos κ ( x ) = exp κ ( i x ) + exp κ ( − i x ) 2 {\displaystyle \cos _{\kappa }(x)={\frac {\exp _{\kappa }(ix)+\exp _{\kappa }(-ix)}{2}}} , где κ-обобщенная формула Эйлера имеет вид
exp κ ( ± i x ) = cos κ ( x ) ± i sin κ ( x ) {\displaystyle \exp _{\kappa }(\pm ix)=\cos _{\kappa }(x)\pm i\sin _{\kappa }(x)} .: κ-циклическая тригонометрия сохраняет фундаментальные выражения обычной циклической тригонометрии, которая является частным случаем в пределе κ → 0, такие как:
cos κ 2 ( x ) + sin κ 2 ( x ) = 1 {\displaystyle \cos _{\kappa }^{2}(x)+\sin _{\kappa }^{2}(x)=1} sin κ ( x ⊕ κ y ) = sin κ ( x ) cos κ ( y ) + cos κ ( x ) sin κ ( y ) {\displaystyle \sin _{\kappa }(x{\stackrel {\kappa }{\oplus }}y)=\sin _{\kappa }(x)\cos _{\kappa }(y)+\cos _{\kappa }(x)\sin _{\kappa }(y)} . κ-циклический касательный и κ-циклический котангенс задаются формулами:
tan κ ( x ) = sin κ ( x ) cos κ ( x ) {\displaystyle \tan _{\kappa }(x)={\frac {\sin _{\kappa }(x)}{\cos _{\kappa }(x)}}} cot κ ( x ) = cos κ ( x ) sin κ ( x ) {\displaystyle \cot _{\kappa }(x)={\frac {\cos _{\kappa }(x)}{\sin _{\kappa }(x)}}} . κ-циклические тригонометрические функции становятся обычной тригонометрической функцией в классическом пределе κ → 0 {\displaystyle \kappa \rightarrow 0} .
κ-обратная циклическая функция
Обратные циклические функции Каниадакиса (или κ-обратные циклические функции) связаны с κ-логарифмом:
a r c s i n κ ( x ) = − i ln κ ( 1 − x 2 + i x ) {\displaystyle {\rm {arcsin}}_{\kappa }(x)=-i\ln _{\kappa }\left({\sqrt {1-x^{2}}}+ix\right)} , a r c c o s κ ( x ) = − i ln κ ( x 2 − 1 + x ) {\displaystyle {\rm {arccos}}_{\kappa }(x)=-i\ln _{\kappa }\left({\sqrt {x^{2}-1}}+x\right)} , a r c t a n κ ( x ) = i ln κ ( 1 − i x 1 + i x ) {\displaystyle {\rm {arctan}}_{\kappa }(x)=i\ln _{\kappa }\left({\sqrt {\frac {1-ix}{1+ix}}}\right)} , a r c c o t κ ( x ) = i ln κ ( i x + 1 i x − 1 ) {\displaystyle {\rm {arccot}}_{\kappa }(x)=i\ln _{\kappa }\left({\sqrt {\frac {ix+1}{ix-1}}}\right)} . Гиперболическая тригонометрия Каниадакиса (или κ-гиперболическая тригонометрия) основана на κ-гиперболическом синусе и κ-гиперболическом косинусе, определяемых формулой:
sinh κ ( x ) = exp κ ( x ) − exp κ ( − x ) 2 {\displaystyle \sinh _{\kappa }(x)={\frac {\exp _{\kappa }(x)-\exp _{\kappa }(-x)}{2}}} , cosh κ ( x ) = exp κ ( x ) + exp κ ( − x ) 2 {\displaystyle \cosh _{\kappa }(x)={\frac {\exp _{\kappa }(x)+\exp _{\kappa }(-x)}{2}}} , где формула κ-Эйлера
exp κ ( ± x ) = cosh κ ( x ) ± sinh κ ( x ) {\displaystyle \exp _{\kappa }(\pm x)=\cosh _{\kappa }(x)\pm \sinh _{\kappa }(x)} . κ-гиперболический тангенс и κ-гиперболический котангенс определяются формулами:
tanh κ ( x ) = sinh κ ( x ) cosh κ ( x ) {\displaystyle \tanh _{\kappa }(x)={\frac {\sinh _{\kappa }(x)}{\cosh _{\kappa }(x)}}} coth κ ( x ) = cosh κ ( x ) sinh κ ( x ) {\displaystyle \coth _{\kappa }(x)={\frac {\cosh _{\kappa }(x)}{\sinh _{\kappa }(x)}}} . κ-гиперболические тригонометрические функции становятся обычными гиперболическими тригонометрическими функциями в классическом пределе κ → 0 {\displaystyle \kappa \rightarrow 0} .
Из формулы κ-Эйлера и свойства exp κ ( − x ) exp κ ( x ) = 1 {\displaystyle \exp _{\kappa }(-x)\exp _{\kappa }(x)=1} основное выражение κ-гиперболической тригонометрии задается следующим образом:
cosh κ 2 ( x ) − sinh κ 2 ( x ) = 1 {\displaystyle \cosh _{\kappa }^{2}(x)-\sinh _{\kappa }^{2}(x)=1} κ-обратная гиперболическая функция
Обратные гиперболические функции Каниадакиса (или κ-обратные гиперболические функции) связаны с κ-логарифмом:
a r c s i n h κ ( x ) = ln κ ( 1 + x 2 + x ) {\displaystyle {\rm {arcsinh}}_{\kappa }(x)=\ln _{\kappa }\left({\sqrt {1+x^{2}}}+x\right)} , a r c c o s h κ ( x ) = ln κ ( x 2 − 1 + x ) {\displaystyle {\rm {arccosh}}_{\kappa }(x)=\ln _{\kappa }\left({\sqrt {x^{2}-1}}+x\right)} , a r c t a n h κ ( x ) = ln κ ( 1 + x 1 − x ) {\displaystyle {\rm {arctanh}}_{\kappa }(x)=\ln _{\kappa }\left({\sqrt {\frac {1+x}{1-x}}}\right)} , a r c c o t h κ ( x ) = ln κ ( 1 − x 1 + x ) {\displaystyle {\rm {arccoth}}_{\kappa }(x)=\ln _{\kappa }\left({\sqrt {\frac {1-x}{1+x}}}\right)} , в котором справедливы следующие соотношения:
a r c s i n h κ ( x ) = s i g n ( x ) a r c c o s h κ ( 1 + x 2 ) {\displaystyle {\rm {arcsinh}}_{\kappa }(x)={\rm {sign}}(x){\rm {arccosh}}_{\kappa }\left({\sqrt {1+x^{2}}}\right)} , a r c s i n h κ ( x ) = a r c t a n h κ ( x 1 + x 2 ) {\displaystyle {\rm {arcsinh}}_{\kappa }(x)={\rm {arctanh}}_{\kappa }\left({\frac {x}{\sqrt {1+x^{2}}}}\right)} , a r c s i n h κ ( x ) = a r c c o t h κ ( 1 + x 2 x ) {\displaystyle {\rm {arcsinh}}_{\kappa }(x)={\rm {arccoth}}_{\kappa }\left({\frac {\sqrt {1+x^{2}}}{x}}\right)} . κ-циклическая и κ-гиперболическая тригонометрические функции связаны следующими соотношениями:
s i n κ ( x ) = − i s i n h κ ( i x ) {\displaystyle {\rm {sin}}_{\kappa }(x)=-i{\rm {sinh}}_{\kappa }(ix)} , c o s κ ( x ) = c o s h κ ( i x ) {\displaystyle {\rm {cos}}_{\kappa }(x)={\rm {cosh}}_{\kappa }(ix)} , t a n κ ( x ) = − i t a n h κ ( i x ) {\displaystyle {\rm {tan}}_{\kappa }(x)=-i{\rm {tanh}}_{\kappa }(ix)} , c o t κ ( x ) = i c o t h κ ( i x ) {\displaystyle {\rm {cot}}_{\kappa }(x)=i{\rm {coth}}_{\kappa }(ix)} , a r c s i n κ ( x ) = − i a r c s i n h κ ( i x ) {\displaystyle {\rm {arcsin}}_{\kappa }(x)=-i\,{\rm {arcsinh}}_{\kappa }(ix)} , a r c c o s κ ( x ) ≠ − i a r c c o s h κ ( i x ) {\displaystyle {\rm {arccos}}_{\kappa }(x)\neq -i\,{\rm {arccosh}}_{\kappa }(ix)} , a r c t a n κ ( x ) = − i a r c t a n h κ ( i x ) {\displaystyle {\rm {arctan}}_{\kappa }(x)=-i\,{\rm {arctanh}}_{\kappa }(ix)} , a r c c o t κ ( x ) = i a r c c o t h κ ( i x ) {\displaystyle {\rm {arccot}}_{\kappa }(x)=i\,{\rm {arccoth}}_{\kappa }(ix)} . Статистика Каниадакиса основана на κ-энтропии Каниадакиса, которая определяется через:
S κ ( p ) = − ∑ i p i ln κ ( p i ) = ∑ i p i ln κ ( 1 p i ) {\displaystyle S_{\kappa }{\big (}p{\big )}=-\sum _{i}p_{i}\ln _{\kappa }{\big (}p_{i}{\big )}=\sum _{i}p_{i}\ln _{\kappa }{\bigg (}{\frac {1}{p_{i}}}{\bigg )}} где p = { p i = p ( x i ) ; x ∈ R ; i = 1 , 2 , . . . , N ; ∑ i p i = 1 } {\displaystyle p=\{p_{i}=p(x_{i});x\in \mathbb {R} ;i=1,2,...,N;\sum _{i}p_{i}=1\}} это функция распределения вероятностей, определенная для случайной величины X {\displaystyle X} , и 0 ≤ | κ | < 1 {\displaystyle 0\leq |\kappa |<1} является энтропийным индексом.
κ-энтропия Каниадакиса термодинамически стабильна и устойчива по Леше. [19] [20] и подчиняется аксиомам Шеннона-Хинчина непрерывности, максимальности, обобщенной аддитивности и расширяемости.
Распределение Каниадакиса (или κ -распределение ) — это распределение вероятностей, полученное в результате максимизации энтропии Каниадакиса при соответствующих ограничениях. В связи с этим появляется несколько вероятностных распределений для анализа широкого спектра феноменологии, связанной с экспериментальными степенными статистическими распределениями.
Преобразование Каниадакиса Лапласа (или κ-преобразование Лапласа) представляет собой κ-деформированное интегральное преобразование обычного преобразования Лапласа . Преобразование κ-Лапласа преобразует функцию f {\displaystyle f} действительной переменной t {\displaystyle t} к новой функции F κ ( s ) {\displaystyle F_{\kappa }(s)} в комплексной частотной области, представленной комплексной переменной s {\displaystyle s} . Это κ-интегральное преобразование определяется как: [21]
F κ ( s ) = L κ { f ( t ) } ( s ) = ∫ 0 ∞ f ( t ) [ exp κ ( − t ) ] s d t {\displaystyle F_{\kappa }(s)={\cal {L}}_{\kappa }\{f(t)\}(s)=\int _{\,0}^{\infty }\!f(t)\,[\exp _{\kappa }(-t)]^{s}\,dt} Обратное κ-преобразование Лапласа определяется формулой:
f ( t ) = L κ − 1 { F κ ( s ) } ( t ) = 1 2 π i ∫ c − i ∞ c + i ∞ F κ ( s ) [ exp κ ( t ) ] s 1 + κ 2 t 2 d s {\displaystyle f(t)={\cal {L}}_{\kappa }^{-1}\{F_{\kappa }(s)\}(t)={{\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }\!F_{\kappa }(s)\,{\frac {[\exp _{\kappa }(t)]^{s}}{\sqrt {1+\kappa ^{2}t^{2}}}}\,ds}} Обычное преобразование Лапласа и его обратное преобразование восстанавливаются как κ → 0 {\displaystyle \kappa \rightarrow 0} .
Характеристики
Пусть две функции f ( t ) = L κ − 1 { F κ ( s ) } ( t ) {\displaystyle f(t)={\cal {L}}_{\kappa }^{-1}\{F_{\kappa }(s)\}(t)} и g ( t ) = L κ − 1 { G κ ( s ) } ( t ) {\displaystyle g(t)={\cal {L}}_{\kappa }^{-1}\{G_{\kappa }(s)\}(t)} и соответствующие им κ-преобразования Лапласа F κ ( s ) {\displaystyle F_{\kappa }(s)} и G κ ( s ) {\displaystyle G_{\kappa }(s)} В следующей таблице представлены основные свойства преобразования κ-Лапласа: [21]
Свойства преобразования κ-Лапласа Свойство f ( t ) {\displaystyle f(t)} F κ ( s ) {\displaystyle F_{\kappa }(s)} Линейность a f ( t ) + b g ( t ) {\displaystyle a\,f(t)+b\,g(t)} a F κ ( s ) + b G κ ( s ) {\displaystyle a\,F_{\kappa }(s)+b\,G_{\kappa }(s)} Масштабирование времени f ( a t ) {\displaystyle f(at)} 1 a F κ / a ( s a ) {\displaystyle {\frac {1}{a}}\,F_{\kappa /a}({\frac {s}{a}})} Сдвиг частоты f ( t ) [ exp κ ( − t ) ] a {\displaystyle f(t)\,[\exp _{\kappa }(-t)]^{a}} F κ ( s − a ) {\displaystyle F_{\kappa }(s-a)} Производная d f ( t ) d t {\displaystyle {\frac {d\,f(t)}{dt}}} s L κ { f ( t ) 1 + κ 2 t 2 } ( s ) − f ( 0 ) {\displaystyle s\,{\cal {L}}_{\kappa }\left\{{\frac {f(t)}{\sqrt {1+\kappa ^{2}t^{2}}}}\right\}(s)-f(0)} Производная d d t 1 + κ 2 t 2 f ( t ) {\displaystyle {\frac {d}{dt}}\,{\sqrt {1+\kappa ^{2}t^{2}}}\,f(t)} s F κ ( s ) − f ( 0 ) {\displaystyle s\,F_{\kappa }(s)-f(0)} во временной области Интеграция 1 1 + κ 2 t 2 ∫ 0 t f ( w ) d w {\displaystyle {\frac {1}{\sqrt {1+\kappa ^{2}t^{2}}}}\,\int _{0}^{t}f(w)dw} 1 s F κ ( s ) {\displaystyle {\frac {1}{s}}\,F_{\kappa }(s)} f ( t ) [ ln ( exp κ ( t ) ) ] n {\displaystyle f(t)\,[\ln(\exp _{\kappa }(t))]^{n}} ( − 1 ) n d n F κ ( s ) d s n {\displaystyle (-1)^{n}{\frac {d^{n}F_{\kappa }(s)}{ds^{n}}}} f ( t ) [ ln ( exp κ ( t ) ) ] − n {\displaystyle f(t)\,[\ln(\exp _{\kappa }(t))]^{-n}} ∫ s + ∞ d w n ∫ w n + ∞ d w n − 1 . . . ∫ w 3 + ∞ d w 2 ∫ w 2 + ∞ d w 1 F κ ( w 1 ) {\displaystyle \int _{s}^{+\infty }dw_{n}\int _{w_{n}}^{+\infty }dw_{n-1}...\int _{w_{3}}^{+\infty }dw_{2}\int _{w_{2}}^{+\infty }dw_{1}\,F_{\kappa }(w_{1})} Дельта-функция Дирака δ ( t − τ ) {\displaystyle \delta (t-\tau )} [ exp κ ( − τ ) ] s {\displaystyle [\exp _{\kappa }(-\tau )]^{s}} Функция единицы Хевисайда u ( t − τ ) {\displaystyle u(t-\tau )} s 1 + κ 2 τ 2 + κ 2 τ s 2 − κ 2 [ exp κ ( − τ ) ] s {\displaystyle {\frac {s{\sqrt {1+\kappa ^{2}\tau ^{2}}}+\kappa ^{2}\tau }{s^{2}-\kappa ^{2}}}\,[\exp _{\kappa }(-\tau )]^{s}} Функция мощности t ν − 1 {\displaystyle t^{\nu -1}} s 2 s 2 − κ 2 ν 2 Γ κ s ( ν + 1 ) ν s ν = s s + | κ | ν Γ ( ν ) | 2 κ | ν Γ ( s | 2 κ | − ν 2 ) Γ ( s | 2 κ | + ν 2 ) {\displaystyle {\frac {s^{2}}{s^{2}-\kappa ^{2}\nu ^{2}}}\,{\frac {\Gamma _{\frac {\kappa }{s}}(\nu +1)}{\nu \,s^{\nu }}}={\frac {s}{s+|\kappa |\nu }}\,{\frac {\Gamma (\nu )}{|2\kappa |^{\nu }}}\,{\frac {\Gamma \left({\frac {s}{|2\kappa |}}-{\frac {\nu }{2}}\right)}{\Gamma \left({\frac {s}{|2\kappa |}}+{\frac {\nu }{2}}\right)}}} Функция мощности t 2 m − 1 , m ∈ Z + {\displaystyle t^{2m-1},\ \ m\in Z^{+}} ( 2 m − 1 ) ! ∏ j = 1 m [ s 2 − ( 2 j ) 2 κ 2 ] {\displaystyle {\frac {(2m-1)!}{\prod _{j=1}^{m}\left[s^{2}-(2j)^{2}\kappa ^{2}\right]}}} Функция мощности t 2 m , m ∈ Z + {\displaystyle t^{2m},\ \ m\in Z^{+}} ( 2 m ) ! s ∏ j = 1 m + 1 [ s 2 − ( 2 j − 1 ) 2 κ 2 ] {\displaystyle {\frac {(2m)!\,s}{\prod _{j=1}^{m+1}\left[s^{2}-(2j-1)^{2}\kappa ^{2}\right]}}}
Преобразования κ-Лапласа, представленные в последней таблице, сводятся к соответствующим обычным преобразованиям Лапласа в классическом пределе κ → 0 {\displaystyle \kappa \rightarrow 0} .
Преобразование Фурье Каниадакиса (или κ-преобразование Фурье) представляет собой κ-деформированное интегральное преобразование обычного преобразования Фурье , которое согласуется с κ-алгеброй и κ-исчислением. κ-преобразование Фурье определяется как: [22]
F κ [ f ( x ) ] ( ω ) = 1 2 π ∫ − ∞ + ∞ f ( x ) exp κ ( − x ⊗ κ ω ) i d κ x {\displaystyle {\cal {F}}_{\kappa }[f(x)](\omega )={1 \over {\sqrt {2\,\pi }}}\int \limits _{-\infty }\limits ^{+\infty }f(x)\,\exp _{\kappa }(-x\otimes _{\kappa }\omega )^{i}\,d_{\kappa }x} который можно переписать как
F κ [ f ( x ) ] ( ω ) = 1 2 π ∫ − ∞ + ∞ f ( x ) exp ( − i x { κ } ω { κ } ) 1 + κ 2 x 2 d x {\displaystyle {\cal {F}}_{\kappa }[f(x)](\omega )={1 \over {\sqrt {2\,\pi }}}\int \limits _{-\infty }\limits ^{+\infty }f(x)\,{\exp(-i\,x_{\{\kappa \}}\,\omega _{\{\kappa \}}) \over {\sqrt {1+\kappa ^{2}\,x^{2}}}}\,dx} где x { κ } = 1 κ a r c s i n h ( κ x ) {\displaystyle x_{\{\kappa \}}={\frac {1}{\kappa }}\,{\rm {arcsinh}}\,(\kappa \,x)} и ω { κ } = 1 κ a r c s i n h ( κ ω ) {\displaystyle \omega _{\{\kappa \}}={\frac {1}{\kappa }}\,{\rm {arcsinh}}\,(\kappa \,\omega )} . κ-преобразование Фурье обеспечивает асимптотически логарифмически периодическое поведение, деформируя параметры x {\displaystyle x} и ω {\displaystyle \omega } в дополнение к коэффициенту демпфирования, а именно 1 + κ 2 x 2 {\displaystyle {\sqrt {1+\kappa ^{2}\,x^{2}}}} .
Реальная (верхняя панель) и мнимая (нижняя панель) части ядра. h κ ( x , ω ) {\displaystyle h_{\kappa }(x,\omega )} для типичного κ {\displaystyle \kappa } -ценности и ω = 1 {\displaystyle \omega =1} . Ядро κ-преобразования Фурье задается формулой:
h κ ( x , ω ) = exp ( − i x { κ } ω { κ } ) 1 + κ 2 x 2 {\displaystyle h_{\kappa }(x,\omega )={\frac {\exp(-i\,x_{\{\kappa \}}\,\omega _{\{\kappa \}})}{\sqrt {1+\kappa ^{2}\,x^{2}}}}}
Обратное κ-преобразование Фурье определяется как: [22]
F κ [ f ^ ( ω ) ] ( x ) = 1 2 π ∫ − ∞ + ∞ f ^ ( ω ) exp κ ( ω ⊗ κ x ) i d κ ω {\displaystyle {\cal {F}}_{\kappa }[{\hat {f}}(\omega )](x)={1 \over {\sqrt {2\,\pi }}}\int \limits _{-\infty }\limits ^{+\infty }{\hat {f}}(\omega )\,\exp _{\kappa }(\omega \otimes _{\kappa }x)^{i}\,d_{\kappa }\omega } Позволять u κ ( x ) = 1 κ cosh ( κ ln ( x ) ) {\displaystyle u_{\kappa }(x)={\frac {1}{\kappa }}\cosh {\Big (}\kappa \ln(x){\Big )}} , в следующей таблице показаны κ-преобразования Фурье нескольких известных функций: [22]
κ-преобразование Фурье нескольких функций f ( x ) {\displaystyle f(x)} F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }[f(x)](\omega )} Ступенчатая функция θ ( x ) {\displaystyle \theta (x)} 2 π δ ( ω ) + 1 2 π i ω { κ } {\displaystyle {\sqrt {2\,\pi }}\,\delta (\omega )+{1 \over {\sqrt {2\,\pi }}\,i\,\omega _{\{\kappa \}}}} Модуляция cos κ ( a ⊕ κ x ) {\displaystyle \cos _{\kappa }(a{\stackrel {\kappa }{\oplus }}x)} π 2 u κ ( exp κ ( a ) ) ( δ ( ω + a ) + δ ( ω − a ) ) {\displaystyle {\sqrt {\pi \over 2}}\,u_{\kappa }(\exp _{\kappa }(a))\,\left(\delta (\omega +a)+\delta (\omega -a)\right)} Причинно-следственный κ {\displaystyle \kappa } -экспоненциальный θ ( x ) exp κ ( − a ⊗ κ x ) {\displaystyle \theta (x)\,\exp _{\kappa }(-a{\stackrel {\kappa }{\otimes }}x)} 1 2 π 1 a { κ } + i ω { κ } {\displaystyle {1 \over {\sqrt {2\,\pi }}}{1 \over a_{\{\kappa \}}+i\,\omega _{\{\kappa \}}}} Симметричный κ {\displaystyle \kappa } -экспоненциальный exp κ ( − a ⊗ κ | x | ) {\displaystyle \exp _{\kappa }(-a{\stackrel {\kappa }{\otimes }}|x|)} 2 π a { κ } a { κ } 2 + ω { κ } 2 {\displaystyle {\sqrt {2 \over \pi }}\,{a_{\{\kappa \}} \over a_{\{\kappa \}}^{2}+\omega _{\{\kappa \}}^{2}}} Постоянный 1 {\displaystyle 1} 2 π δ ( ω ) {\displaystyle {\sqrt {2\,\pi }}\,\delta (\omega )} κ {\displaystyle \kappa } -Фазор exp κ ( a ⊗ κ x ) i {\displaystyle \exp _{\kappa }\,(a{\stackrel {\kappa }{\otimes }}x)^{i}} 2 π u κ ( exp κ ( a ) ) δ ( ω − a ) {\displaystyle {\sqrt {2\,\pi }}\,u_{\kappa }(\exp _{\kappa }(a))\,\delta (\omega -a)} Импульс δ ( x − a ) {\displaystyle \delta (x-a)} 1 2 π exp κ ( ω ⊗ κ a ) i u κ ( exp κ ( a ) ) {\displaystyle {1 \over {\sqrt {2\,\pi }}}{\exp _{\kappa }\,(\omega {\stackrel {\kappa }{\otimes }}a)^{i} \over u_{\kappa }\left(\exp _{\kappa }\,(a)\right)}} Знак Знак ( x ) {\displaystyle (x)} 2 π 1 i ω { κ } {\displaystyle {\sqrt {2 \over \pi }}\,\,{1 \over i\,\omega _{\{\kappa \}}}} Прямоугольный Π ( x a ) {\displaystyle \Pi \left({x \over a}\right)} 2 π a { κ } s i n c κ ( ω ⊗ κ a ) {\displaystyle {\sqrt {2 \over \pi }}\,\,a_{\{\kappa \}}\,{\rm {sinc}}_{\kappa }(\omega {\stackrel {\kappa }{\otimes }}a)}
κ-деформированная версия преобразования Фурье сохраняет основные свойства обычного преобразования Фурье, как показано в следующей таблице.
κ-свойства Фурье f ( x ) {\displaystyle f(x)} F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }[f(x)](\omega )} Линейность F κ [ α f ( x ) + β g ( x ) ] ( ω ) = α F κ [ f ( x ) ] ( ω ) + β F κ [ g ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }[\alpha \,f(x)+\beta \,g(x)](\omega )=\alpha \,{\cal {F}}_{\kappa }[f(x)](\omega )+\beta \,{\cal {F}}_{\kappa }[g(x)](\omega )} Масштабирование F κ [ f ( α x ) ] ( ω ) = 1 α F κ ′ [ f ( x ) ] ( ω ′ ) {\displaystyle {\cal {F}}_{\kappa }\left[f(\alpha \,x)\right](\omega )={1 \over \alpha }\,{\cal {F}}_{\kappa ^{\prime }}\left[f(x)\right](\omega ^{\prime })} где κ ′ = κ / α {\displaystyle \kappa ^{\prime }=\kappa /\alpha } и ω ′ = ( a / κ ) sinh ( a r c s i n h ( κ ω ) / a 2 ) {\displaystyle \omega ^{\prime }=(a/\kappa )\,\sinh \left({\rm {arcsinh}}(\kappa \,\omega )/a^{2}\right)} κ {\displaystyle \kappa } -Масштабирование F κ [ f ( α ⊗ κ x ) ] ( ω ) = 1 α { κ } F κ [ f ( x ) ] ( 1 α ⊗ κ ω ) {\displaystyle {\cal {F}}_{\kappa }\left[f(\alpha {\stackrel {\kappa }{\otimes }}x)\right](\omega )={1 \over \alpha _{\{\kappa \}}}\,{\cal {F}}_{\kappa }[f(x)]\left({\frac {1}{\alpha }}{\stackrel {\kappa }{\otimes }}\omega \right)} Комплексное сопряжение F κ [ f ( x ) ] ∗ ( ω ) = F κ [ f ( x ) ] ( − ω ) {\displaystyle {\cal {F}}_{\kappa }{\big [}f(x){\big ]}^{\ast }(\omega )={\cal {F}}_{\kappa }{\big [}f(x){\big ]}(-\omega )} Двойственность F κ [ F κ [ f ( x ) ] ( ν ) ] ( ω ) = f ( − ω ) {\displaystyle {\cal {F}}_{\kappa }{\Big [}{\cal {F}}_{\kappa }{\big [}f(x){\big ]}(\nu ){\Big ]}(\omega )=f(-\omega )} Обеспечить регресс F κ [ f ( − x ) ] ( ω ) = F κ [ f ( x ) ] ( − ω ) {\displaystyle {\cal {F}}_{\kappa }\left[f(-x)\right](\omega )={\cal {F}}_{\kappa }[f(x)](-\omega )} κ {\displaystyle \kappa } -Сдвиг частоты F κ [ exp κ ( ω 0 ⊗ κ x ) i f ( x ) ] ( ω ) = F κ [ f ( x ) ] ( ω ⊖ κ ω 0 ) {\displaystyle {\cal {F}}_{\kappa }\left[\exp _{\kappa }(\omega _{0}{\stackrel {\kappa }{\otimes }}x)^{i}f(x)\right](\omega )={\cal {F}}_{\kappa }[f(x)](\omega {\stackrel {\kappa }{\ominus }}\omega _{0})} κ {\displaystyle \kappa } -Сдвиг времени F κ [ f ( x ⊕ κ x 0 ) ] ( ω ) = exp κ ( ω ⊗ κ x 0 ) i F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left[f(x\,{\stackrel {\kappa }{\oplus }}\,x_{0})\right](\omega )=\exp _{\kappa }(\omega \,{\stackrel {\kappa }{\otimes }}\,x_{0})^{i}\,{\cal {F}}_{\kappa }[f(x)](\omega )} Преобразование κ {\displaystyle \kappa } -производная F κ [ d f ( x ) d κ x ] ( ω ) = i ω { κ } F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left[{\frac {d\,f(x)}{d_{\kappa }x}}\right](\omega )=i\,\omega _{\{\kappa \}}\,{\cal {F}}_{\kappa }[f(x)](\omega )} κ {\displaystyle \kappa } -Производная преобразования d d κ ω F κ [ f ( x ) ] ( ω ) = − i ω { κ } F κ [ x { κ } f ( x ) ] ( ω ) {\displaystyle {\frac {d}{d_{\kappa }\omega }}\,{\cal {F}}_{\kappa }[f(x)](\omega )=-i\,\omega _{\{\kappa \}}\,{\cal {F}}_{\kappa }\left[x_{\{\kappa \}}\,f(x)\right](\omega )} Преобразование интеграла F κ [ ∫ − ∞ x f ( y ) d y ] ( ω ) = 1 i ω { κ } F κ [ f ( x ) ] ( ω ) + 2 π F κ [ f ( x ) ] ( 0 ) δ ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left[\int \limits _{-\infty }\limits ^{x}f(y)\,dy\right](\omega )={1 \over i\,\omega _{\{\kappa \}}}{\cal {F}}_{\kappa }[f(x)](\omega )+2\,\pi \,{\cal {F}}_{\kappa }[f(x)](0)\,\delta (\omega )} κ {\displaystyle \kappa } -Свертка F κ [ ( f ⊛ κ g ) ( x ) ] ( ω ) = 2 π F κ [ f ( x ) ] ( ω ) F κ [ g ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left[(f\,{\stackrel {\kappa }{\circledast }}\,g)(x)\right](\omega )={\sqrt {2\,\pi }}\,{\cal {F}}_{\kappa }[f(x)](\omega )\,{\cal {F}}_{\kappa }[g(x)](\omega )} где ( f ⊛ κ g ) ( x ) = ∫ − ∞ + ∞ f ( y ) g ( x ⊖ κ y ) d κ y {\displaystyle (f\,{\stackrel {\kappa }{\circledast }}\,g)(x)=\int \limits _{-\infty }\limits ^{+\infty }f(y)\,g(x\,{\stackrel {\kappa }{\ominus }}\,y)\,d_{\kappa }y} Модуляция F κ [ f ( x ) g ( x ) ] ( ω ) = 1 2 π ( F κ [ f ( x ) ] ⊛ κ F κ [ g ( x ) ] ) ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left[f(x)\,g(x)\right](\omega )={1 \over {\sqrt {2\,\pi }}}\left({\cal {F}}_{\kappa }\left[f(x)\right]\,{\stackrel {\kappa }{\circledast }}\,{\cal {F}}_{\kappa }\left[g(x)\right]\right)(\omega )}
Свойства κ-преобразования Фурье, представленные в последней таблице, сводятся к соответствующим обычным преобразованиям Фурье в классическом пределе κ → 0 {\displaystyle \kappa \rightarrow 0} .
^ Каниадакис, Г. (2009). «Релятивистская энтропия и связанная с ней кинетика Больцмана» . Европейский физический журнал А. 40 (3): 275–287. arXiv : 0901.1058 . Бибкод : 2009EPJA...40..275K . дои : 10.1140/epja/i2009-10793-6 . ISSN 1434-6001 . S2CID 119190011 . ^ Каниадакис, Г. (2002). «Статистическая механика в контексте специальной теории относительности» . Физический обзор E . 66 (5): 056125. arXiv : cond-mat/0210467 . Бибкод : 2002PhRvE..66e6125K . дои : 10.1103/PhysRevE.66.056125 . ISSN 1063-651X . ПМИД 12513574 . S2CID 45635888 . ^ Каниадакис, Г. (2005). «Статистическая механика в контексте специальной теории относительности. II» . Физический обзор E . 72 (3): 036108. arXiv : cond-mat/0507311 . Бибкод : 2005PhRvE..72c6108K . дои : 10.1103/PhysRevE.72.036108 . ISSN 1539-3755 . ПМИД 16241516 . S2CID 18115408 . ^ Каниадакис, Г. (2011). «Степенные статистические распределения и преобразования Лоренца» . Буквы по физике А. 375 (3): 356–359. arXiv : 1110.3944 . Бибкод : 2011PhLA..375..356K . дои : 10.1016/j.physleta.2010.11.057 . ISSN 0375-9601 . S2CID 118435479 . ^ Каниадакис, Г. (2001). «Нелинейная кинетика, лежащая в основе обобщенной статистики» . Физика А: Статистическая механика и ее приложения . 296 (3): 405–425. arXiv : cond-mat/0103467 . Бибкод : 2001PhyA..296..405K . дои : 10.1016/S0378-4371(01)00184-4 . ISSN 0378-4371 . S2CID 44275064 . ^ Каниадакис, Г. (2009). «Принцип максимальной энтропии и степенные хвостовые распределения» . Европейский физический журнал Б. 70 (1): 3–13. arXiv : 0904.4180 . Бибкод : 2009EPJB...70....3K . дои : 10.1140/epjb/e2009-00161-0 . ISSN 1434-6028 . S2CID 55421804 . ^ Каниадакис, Г. (2021). «Новые степенные распределения, возникающие в κ-статистике (а)» . Письма по еврофизике . 133 (1): 10002. arXiv : 2203.01743 . Бибкод : 2021EL....13310002K . дои : 10.1209/0295-5075/133/10002 . ISSN 0295-5075 . S2CID 234144356 . ^ Карвалью, Ж.К.; Сильва, Р.; до Насименту-младший, доктор юридических наук; Де Медейрос-младший (2008). «Степенная статистика и скорости вращения звезд в Плеядах» . EPL (Письма по еврофизике) . 84 (5): 59001. arXiv : 0903.0836 . Бибкод : 2008EL.....8459001C . дои : 10.1209/0295-5075/84/59001 . ISSN 0295-5075 . S2CID 7123391 . ^ Кюре, Мишель; Риал, Диего Ф.; Кристен, Алехандра; Кассетти, Джулия (2014). «Метод деконволюции скоростей вращения звезд» . Астрономия и астрофизика . 565 : А85. arXiv : 1401.1054 . Бибкод : 2014A&A...565A..85C . дои : 10.1051/0004-6361/201323344 . ISSN 0004-6361 . S2CID 59375612 . ^ Ураба, Камель; Хамичи-Бендимерад, Амель Хиба; Трибеш, Мулуд (2015). «Квантовая запутанность и энтропия Каниадакиса» . Физика Скрипта . 90 (4): 045101. Бибкод : 2015PhyS...90d5101O . дои : 10.1088/0031-8949/90/4/045101 . ISSN 0031-8949 . S2CID 123776127 . ^ Абреу, «Эвертон»; Анания Нето, Хорхе; Мендес, Альберт ЧР; де Паула, Родриго М. (2019). «Параметр Петлевой квантовой гравитации Иммирзи и статистика Каниадакиса» . Хаос, солитоны и фракталы . 118 : 307–310. arXiv : 1808.01891 . Бибкод : 2019CSF...118..307A . дои : 10.1016/j.chaos.2018.11.033 . ISSN 0960-0779 . S2CID 119207713 . ^ Христопулос, Дионисиос Т.; Петракис, Манолис П.; Каниадакис, Джорджио (2014). «Эффекты конечного размера на распределения интервалов возврата для систем масштабирования слабейшего звена» . Физический обзор E . 89 (5): 052142. arXiv : 1308.1881 . Бибкод : 2014PhRvE..89e2142H . дои : 10.1103/PhysRevE.89.052142 . ISSN 1539-3755 . ПМИД 25353774 . S2CID 22310350 . ^ да Силва, Сержио Луис ЭФ (2021). «κ-обобщенный закон Гутенберга – Рихтера и самоподобие землетрясений» . Хаос, солитоны и фракталы . 143 : 110622. Бибкод : 2021CSF...14310622D . дои : 10.1016/j.chaos.2020.110622 . ISSN 0960-0779 . S2CID 234063959 . ^ Соуза, NTCM; Ансельмо, DHAL; Сильва, Р.; Васконселос, Миссисипи; Мелло, В.Д. (2014). «κ-статистический анализ Y-хромосомы» . EPL (Письма по еврофизике) . 108 (3): 38004. doi : 10.1209/0295-5075/108/38004 . ISSN 0295-5075 . S2CID 122456729 . ^ Коста, Миссури; Сильва, Р.; Ансельмо, DHAL; Сильва, JRP (2019). «Анализ ДНК человека с помощью степенной статистики» . Физический обзор E . 99 (2): 022112. Бибкод : 2019PhRvE..99b2112C . дои : 10.1103/PhysRevE.99.022112 . ISSN 2470-0045 . ПМИД 30934358 . S2CID 91186653 . ^ Клементи, Фабио; Галлегати, Мауро; Каниадакис, Джорджио (2012). «Новая модель распределения доходов: κ-обобщенное распределение» . Журнал экономики . 105 (1): 63–91. дои : 10.1007/s00712-011-0221-0 . hdl : 11393/73598 . ISSN 0931-8658 . S2CID 155080665 . ^ Тривеллато, Барбара (2013). «Деформированные экспоненты и приложения к финансам» . Энтропия . 15 (12): 3471–3489. Бибкод : 2013Entrp..15.3471T . дои : 10.3390/e15093471 . ISSN 1099-4300 . ^ Каниадакис, Джорджио; Балди, Мауро М.; Дейсбоек, Томас С.; Гризолия, Джулия; Христопулос, Дионисиос Т.; Скарфоне, Антонио М.; Спаравинья, Амелия; Вада, Тацуаки; Люсия, Умберто (2020). «К-статистический подход к эпидемиологии» . Научные отчеты . 10 (1): 19949. arXiv : 2012.00629 . Бибкод : 2020НатСР..1019949К . дои : 10.1038/s41598-020-76673-3 . ISSN 2045-2322 . ПМЦ 7673996 . ПМИД 33203913 . ^ Абэ, С.; Каниадакис, Г.; Скарфон, AM (2004) [2004]. «Стабильности обобщенной энтропии» . Журнал физики A: Математический и общий . 37 (44): 10513–10519. arXiv : cond-mat/0401290 . Бибкод : 2004JPhA...3710513A . дои : 10.1088/0305-4470/37/44/004 . S2CID 16080176 . ^ Каниадакис, Г. (2001). «H-теорема и обобщенная энтропия в рамках нелинейной кинетики» . Буквы по физике А. 288 (5–6): 283–291. arXiv : cond-mat/0109192 . Бибкод : 2001PhLA..288..283K . дои : 10.1016/S0375-9601(01)00543-6 . S2CID 119445915 . ^ Jump up to: а б Каниадакис, Джорджио (25 сентября 2013 г.). «Теоретические основы и математический формализм степенных статистических распределений» . Энтропия . 15 (12): 3983–4010. arXiv : 1309.6536 . Бибкод : 2013Entrp..15.3983K . дои : 10.3390/e15103983 . ISSN 1099-4300 . ^ Jump up to: а б с Скарфон, AM (2017). «κ-деформированное преобразование Фурье» . Физика А: Статистическая механика и ее приложения . 480 : 63–78. arXiv : 2206.06869 . Бибкод : 2017PhyA..480...63S . дои : 10.1016/j.physa.2017.03.036 . S2CID 126079408 .