Иммуностарение
Иммуностарение – это постепенное ухудшение иммунной системы , вызванное естественным возрастом . Обзор 2020 года пришел к выводу, что адаптивная иммунная система страдает больше, чем врожденная иммунная система . [1] Иммуностарение включает в себя как способность хозяина реагировать на инфекции, так и развитие долговременной иммунной памяти. Возрастной иммунодефицит обнаруживается как у долгоживущих, так и у короткоживущих видов как функция их возраста относительно ожидаемой продолжительности жизни, а не прошедшего времени. [2]
Его изучали на животных моделях, включая мышей, сумчатых и обезьян. [3] [4] [5] Иммуностарение является фактором, способствующим увеличению частоты заболеваемости и смертности среди пожилых людей. Наряду с анергией Т-клеток и истощением , иммуностарение относится к основным состояниям дисфункции иммунной системы. Однако, хотя анергия Т-клеток является обратимым состоянием, по состоянию на 2020 год не было разработано никаких методов обращения иммуностарения. [6] [7]
Иммуностарение не является случайным ухудшенным явлением, скорее, оно, по-видимому, обратно повторяет эволюционную модель. Большинство параметров, на которые влияет иммуностарение, по-видимому, находятся под генетическим контролем. [8] Иммуностарение можно рассматривать как результат постоянного воздействия неизбежного воздействия различных антигенов, таких как вирусы и бактерии . [9]
Возрастное снижение иммунной функции
[ редактировать ]Старение иммунной системы – противоречивое явление. Старение относится к репликативному старению из клеточной биологии , которое описывает состояние, когда верхний предел клеточных делений ( предел Хейфлика ) был превышен, и такие клетки совершают апоптоз или теряют свои функциональные свойства. Иммуностарение обычно означает сильный сдвиг как структурных, так и функциональных параметров, имеющий клинически значимый результат. [10] Инволюция тимуса , вероятно, является наиболее важным фактором, ответственным за иммуностарение. Инволюция тимуса распространена у большинства млекопитающих; у людей оно начинается после полового созревания , поскольку иммунологическая защита против большинства новых антигенов необходима главным образом в младенчестве и детстве. [11]
Основной характеристикой иммуносенцентного фенотипа является сдвиг в распределении субпопуляций Т-клеток. По мере инволюции тимуса количество наивных Т-клеток (особенно CD8+ ) уменьшается, таким образом, наивные Т-клетки гомеостатически пролиферируют в Т-клетки памяти в качестве компенсации. [5] Считается, что переход к фенотипу памяти может быть ускорен путем рестимуляции иммунной системы стойкими патогенами , такими как ЦМВ и ВПГ . По оценкам, к 40 годам от 50% до 85% взрослых заразились цитомегаловирусом человека ( ЦМВЦ ). [1] Повторяющиеся инфекции, вызванные латентными вирусами герпеса, могут истощить иммунную систему пожилых людей. [12] Последовательная, повторяющаяся стимуляция такими патогенами приводит к преимущественной дифференцировке фенотипа памяти Т-клеток, а в обзоре 2020 года сообщалось, что предшественники CD8 + Т-клеток, специфичные для наиболее редких и реже присутствующих антигенов, выделяют больше всего. [5] Такой сдвиг распределения приводит к повышенной восприимчивости к непостоянным инфекциям, раку, аутоиммунным заболеваниям, сердечно-сосудистым заболеваниям и многим другим. [13] [14]
Т-клетки — не единственные иммунные клетки, на которые влияет старение:
- Гематопоэтические стволовые клетки (ГСК), которые обеспечивают регулируемое пожизненное снабжение предшественниками лейкоцитов , которые дифференцируются в специализированные иммунные клетки, теряют способность к самообновлению. [15] Это связано с накоплением окислительного повреждения ДНК . в результате старения и метаболической активности клеток [16] и теломер . укорочение
- Количество фагоцитов снижается у пожилых хозяев в сочетании с внутренним снижением бактерицидной активности. [17] [18]
- Цитотоксичность естественных киллеров (NK) и антигенпрезентирующая функция дендритных клеток уменьшаются с возрастом. [19] [20] [21] [22] Связанное с возрастом нарушение дендритных антигенпрезентирующих клеток (АПК) приводит к дефициту клеточного иммунитета и, таким образом, к неспособности эффекторных Т-лимфоцитов модулировать адаптивный иммунный ответ .
- Гуморальный иммунитет снижается, что вызвано уменьшением популяции антитела, , продуцирующих B-клеток а также меньшим иммуноглобулинов разнообразием и аффинностью . [23] [24]
, помимо изменений в иммунных реакциях, благотворное воздействие воспаления, направленное на нейтрализацию опасных и вредных агентов в раннем возрасте и во взрослом возрасте, становится вредным в конце жизни, в период, в значительной степени не предусмотренный эволюцией. Согласно теории антагонистической плейотропии старения . [25] Изменения в лимфоидном компартменте несут ответственность не только за сбои в работе иммунной системы . Хотя производство миелоидных клеток, по-видимому, не снижается с возрастом, регуляция макрофагов нарушается в результате изменений окружающей среды. [26]
Т-клеточные биомаркеры возрастной дисфункции
[ редактировать ]Функциональная способность Т-клеток больше всего зависит от эффектов старения. Возрастные изменения очевидны на всех стадиях развития Т-клеток, что делает их важным фактором иммуностарения. [27] Снижение функции Т-клеток начинается с прогрессирующей инволюции тимуса . , который является органом, необходимым для созревания Т-клеток Это снижение, в свою очередь, приводит к снижению Ил-2. производства [28] [29] и снижение/истощение количества тимоцитов (т.е. незрелых Т-клеток), тем самым снижая выход периферических наивных Т-клеток. [30] [31] После созревания и циркуляции по периферической системе Т-клетки подвергаются пагубным возрастным изменениям. В результате организм практически лишен девственных Т-клеток, что делает его более склонным к различным заболеваниям. [9]
- сдвиг соотношения CD4+/CD8+ [32]
- накопление и клональная экспансия памяти и эффекторных Т-клеток [8] [33]
- нарушение развития CD4+ Т-фолликулярных хелперных клеток (специализированных на содействии созреванию периферических В-клеток и выработке плазматических клеток , продуцирующих антитела, и В-клеток памяти ) [34]
- дерегуляция передачи внутриклеточных сигналов возможностей [35]
- снижение способности вырабатывать эффекторные лимфокины [36] [33] [37]
- сокращение разнообразия антигенраспознающих репертуара Т-клеточных рецепторов (TcR) [38] [39]
- подавление CD28 костимулирующих молекул [40]
- цитотоксическая активность Т-клеток естественных киллеров (NKT) снижается. [20] за счет снижения экспрессии рецепторов, активирующих цитотоксичность ( NKp30 , NKp46 и др.) и (одновременно) увеличения экспрессии ингибирующих ( KIR , NKG2C и др.) рецепторов NK-клеток [41]
- снижение цитотоксической активности из-за нарушения экспрессии связанных молекул, таких как IFN-γ , гранзим B или перфорин [42] [6]
- нарушение пролиферации в ответ на антигенную стимуляцию [36] [33] [38] [39]
- накопление и клональная экспансия памяти и эффекторных Т-клеток [8] [33]
- ослабление иммунной защиты против вирусных патогенов , особенно цитотоксических CD8+ Т-клеток [37]
- изменения в профиле цитокинов провоспалительных цитокинов , например, увеличение количества у пожилых людей [43] (Ил-6) [10]
- повышенная PD-1 экспрессия [44]
- гликолиз как предпочтительный путь энергетического метаболизма – функционально нарушенные митохондрии производят АФК избыточное количество [45]
- наличие Т-клеточно-специфичных биомаркеров старения (кольцевая РНК100783, микроРНК MiR-181a ) [46] [47]
Проблемы
[ редактировать ]У пожилых людей часто наблюдаются неспецифические признаки и симптомы, а признаки очаговой инфекции часто отсутствуют или скрыты хроническими заболеваниями. [2] Это усложняет диагностику и лечение.
Вакцинация пожилых людей
[ редактировать ]Снижение эффективности вакцинации у пожилых людей обусловлено их ограниченной способностью реагировать на иммунизацию новыми нестойкими патогенами и коррелирует как с изменениями CD4:CD8, так и с нарушением функции дендритных клеток. [48] Таким образом, вакцинация на более ранних этапах жизни кажется более эффективной, хотя продолжительность эффекта варьируется в зависимости от возбудителя. [49] [10]
Спасение фенотипа пожилого возраста
[ редактировать ]Удаление стареющих клеток с помощью сенолитических соединений было предложено как метод повышения иммунитета при старении. [50]
Старение иммунной системы мышей можно частично ограничить путем восстановления роста тимуса, чего можно достичь путем трансплантации пролиферативных эпителиальных клеток тимуса от молодых мышей. [51] метформин замедляет старение. В доклинических исследованиях было доказано, что [52] Его защитное действие, вероятно, обусловлено прежде всего нарушением метаболизма митохондрий, в частности снижением продукции реактивного кислорода. [53] или повышенное соотношение АМФ:АТФ [54] и более низкое соотношение НАД/НАДН. Коэнзим НАД+ снижается в различных тканях в зависимости от возраста, и, таким образом, изменения, связанные с окислительно-восстановительным потенциалом, по-видимому, имеют решающее значение в процессе старения. [55] и добавки НАД+ могут оказывать защитное действие. [56] Рапамицин , противоопухолевый и иммунодепрессант, действует аналогичным образом. [57]
Ссылки
[ редактировать ]- ^ Jump up to: а б Панграцци Л., Вайнбергер Б. (февраль 2020 г.). «Т-клетки, старение и старение». Экспериментальная геронтология . 134 : 110887. doi : 10.1016/j.exger.2020.110887 . ПМИД 32092501 . S2CID 211237913 .
- ^ Jump up to: а б Джинальди Л., Лорето М.Ф., Корси М.П., Модести М., Де Мартинис М. (август 2001 г.). «Иммуностарение и инфекционные болезни». Микробы и инфекции . 3 (10): 851–857. дои : 10.1016/S1286-4579(01)01443-5 . ПМИД 11580980 .
- ^ Летендре С., Сойер Э., Янг Л.Дж., Олд Дж.М. (2018). «Иммуностарение у содержащихся в неволе сумчатых краснохвостых фаскогалов (Phascogale Calura)» . БМК Зоология . 3 : 10. дои : 10.1186/s40850-018-0036-3 . S2CID 53496572 .
- ^ Летендре С., Молодой LJ, Старый JM (октябрь 2018 г.). «Ограничения в выделении и стимуляции мононуклеарных клеток селезенки у сумчатого дасюрида Phascogale Calura» . Исследовательские заметки BMC . 11 (1): 712. doi : 10.1186/s13104-018-3824-5 . ПМК 6180634 . ПМИД 30305168 .
- ^ Jump up to: а б с Николич-Зугич Дж., Радд Б.Д. (август 2010 г.). «Иммунная память и старение: бесконечный или конечный ресурс?» . Современное мнение в иммунологии . 22 (4): 535–540. дои : 10.1016/j.coi.2010.06.011 . ПМК 2925022 . ПМИД 20674320 .
- ^ Jump up to: а б Креспо Дж., Сунь Х., Веллинг Т.Х., Тиан З., Цзоу В. (апрель 2013 г.). «Анергия Т-клеток, истощение, старение и стволовость в микроокружении опухоли» . Современное мнение в иммунологии . 25 (2): 214–221. дои : 10.1016/j.coi.2012.12.003 . ПМЦ 3636159 . ПМИД 23298609 .
- ^ Чжан Цз, Лю С, Чжан Б, Цяо Л, Чжан Ю, Чжан Ю (2020). «Дисфункция Т-клеток и истощение при раке» . Границы клеточной биологии и биологии развития . 8:17 . дои : 10.3389/fcell.2020.00017 . ПМК 7027373 . ПМИД 32117960 .
- ^ Jump up to: а б с Франчески К., Валенсен С., Фаньони Ф., Барби С., Бонафе М. (декабрь 1999 г.). «Биомаркеры иммуностарения с точки зрения эволюции: проблема гетерогенности и роль антигенной нагрузки». Экспериментальная геронтология . 34 (8): 911–921. дои : 10.1016/S0531-5565(99)00068-6 . ПМИД 10673145 . S2CID 32614875 .
- ^ Jump up to: а б Франчески К., Бонафе М., Валенсен С. (февраль 2000 г.). «Иммуностарение человека: преобладание врожденного иммунитета, недостаточность клонотипического иммунитета и заполнение иммунологического пространства». Вакцина . 18 (16): 1717–1720. дои : 10.1016/S0264-410X(99)00513-7 . ПМИД 10689155 .
- ^ Jump up to: а б с Павелец Г. (май 2018 г.). «Возраст и иммунитет: что такое «иммунное старение»?». Экспериментальная геронтология . 105 : 4–9. дои : 10.1016/j.exger.2017.10.024 . ПМИД 29111233 . S2CID 46819839 .
- ^ Шэнли Д.П., Оу Д., Мэнли Н.Р., Палмер Д.Б. (июль 2009 г.). «Эволюционный взгляд на механизмы иммуностарения» . Тенденции в иммунологии . 30 (7): 374–381. дои : 10.1016/j.it.2009.05.001 . ПМИД 19541538 .
- ^ Николич-Зугич Ю (2008). «Старение и пожизненное поддержание субпопуляций Т-клеток перед лицом латентных персистирующих инфекций» . Обзоры природы Иммунология . 8 (7): 512–522. дои : 10.1038/nri2318 . ПМЦ 5573867 . ПМИД 18469829 .
- ^ Хаким FT, Гресс Р.Э. (сентябрь 2007 г.). «Иммуностарение: дефицит адаптивного иммунитета у пожилых людей» . Тканевые антигены . 70 (3): 179–189. дои : 10.1111/j.1399-0039.2007.00891.x . ПМИД 17661905 .
- ^ Хак К., МакЭлхани Дж. Э. (август 2014 г.). «Иммуностарение: вакцинация против гриппа и пожилые люди». Современное мнение в иммунологии . 29 : 38–42. дои : 10.1016/j.coi.2014.03.008 . ПМИД 24769424 .
- ^ Монга I, Каур К., Дханда С. (март 2022 г.). «Возвращаясь к гемопоэзу: применение объемной и одноклеточной транскриптомики, анализирующей транскрипционную гетерогенность в гемопоэтических стволовых клетках». Брифинги по функциональной геномике . 21 (3): 159–176. дои : 10.1093/bfgp/elac002 . ПМИД 35265979 .
- ^ Высокочастотные электромагнитные волны, такие как гамма- и рентгеновские лучи, могут проникать в ДНК и повреждать ее. Ито К., Хирао А., Араи Ф., Мацуока С., Такубо К., Хамагути И. и др. (октябрь 2004 г.). «Регуляция окислительного стресса с помощью АТМ необходима для самообновления гемопоэтических стволовых клеток». Природа . 431 (7011): 997–1002. Бибкод : 2004Natur.431..997I . дои : 10.1038/nature02989 . ПМИД 15496926 . S2CID 4370804 .
- ^ Лорд Дж. М., Батчер С., Киллампали В., Ласеллес Д., Салмон М. (сентябрь 2001 г.). «Старение нейтрофилов и иммунное старение». Механизмы старения и развития . 122 (14): 1521–1535. дои : 10.1016/S0047-6374(01)00285-8 . ПМИД 11511394 . S2CID 1898942 .
- ^ Стаут Р.Д., Саттлс Дж. (июнь 2005 г.). «Иммуностарение и функциональная пластичность макрофагов: нарушение регуляции функции макрофагов из-за возрастных изменений микросреды» . Иммунологические обзоры . 205 : 60–71. дои : 10.1111/j.0105-2896.2005.00260.x . ПМК 1201508 . ПМИД 15882345 .
- ^ Брюунсгаард Х., Педерсен А.Н., Шролл М., Скинхой П., Педерсен Б.К. (декабрь 2001 г.). «Снижение активности естественных клеток-киллеров связано с атеросклерозом у пожилых людей». Экспериментальная геронтология . 37 (1): 127–136. дои : 10.1016/S0531-5565(01)00162-0 . ПМИД 11738153 . S2CID 32717204 .
- ^ Jump up to: а б Моккегиани Э., Малаволта М. (август 2004 г.). «Функции NK- и NKT-клеток при иммуностарении» . Стареющая клетка . 3 (4): 177–184. дои : 10.1111/j.1474-9728.2004.00107.x . ПМИД 15268751 . S2CID 19710282 .
- ^ Уемура К., Castle SC, Макинодан Т (апрель 2002 г.). «Хрупкие пожилые люди: роль дендритных клеток в восприимчивости к инфекции». Механизмы старения и развития . 123 (8): 955–962. дои : 10.1016/S0047-6374(02)00033-7 . ПМИД 12044944 . S2CID 11558962 .
- ^ Санчес-Корреа Б., Кампос С., Пера А., Бергуа Х.М., Аркос М.Дж., Баньяс Х. и др. (апрель 2016 г.). «Имуностарение естественных киллеров у пациентов с острым миелолейкозом: новые мишени для иммунотерапевтических стратегий?» . Иммунология рака, иммунотерапия . 65 (4): 453–463. дои : 10.1007/s00262-015-1720-6 . ПМК 11029066 . ПМИД 26059279 . S2CID 20498123 .
- ^ Гибсон К.Л., Ву Ю.К., Барнетт Ю., Дагган О., Воган Р., Кондеатис Е. и др. (февраль 2009 г.). «Разнообразие B-клеток уменьшается в пожилом возрасте и коррелирует с плохим состоянием здоровья» . Стареющая клетка . 8 (1): 18–25. дои : 10.1111/j.1474-9726.2008.00443.x . ПМЦ 2667647 . ПМИД 18986373 .
- ^ Хан С., Ян К., Озен З., Пэн В., Маринова Е., Келсо Г., Чжэн Б. (февраль 2003 г.). «Усиленная дифференцировка плазматических клеток селезенки, но уменьшение долгоживущих высокоаффинных плазматических клеток костного мозга у старых мышей» . Журнал иммунологии . 170 (3): 1267–1273. дои : 10.4049/jimmunol.170.3.1267 . ПМИД 12538685 .
- ^ Франчески С., Бонафе М., Валенсен С., Оливьери Ф., Де Лука М., Оттавиани Э., Де Бенедиктис Г. (июнь 2000 г.). «Воспаление старения. Эволюционный взгляд на иммуностарение». Анналы Нью-Йоркской академии наук . 908 (1): 244–254. Бибкод : 2000NYASA.908..244F . дои : 10.1111/j.1749-6632.2000.tb06651.x . ПМИД 10911963 . S2CID 1843716 .
- ^ Камбье Дж. (июнь 2005 г.). «Иммуностарение: проблема лимфопоэза, гомеостаза, микроокружения и передачи сигналов». Иммунологические обзоры . 205 : 5–6. дои : 10.1111/j.0105-2896.2005.00276.x . ПМИД 15882340 . S2CID 39130596 .
- ^ Линтон П.Дж., Люстгартен Дж., Томан М. (2006). «Функция Т-клеток у пожилых людей: уроки, извлеченные из животных моделей». Обзоры клинической и прикладной иммунологии . 6 (2): 73–97. дои : 10.1016/j.cair.2006.06.001 .
- ^ Эффрос Р.Б. (апрель 2004 г.). «Репликативное старение CD8 Т-клеток: влияние на старение человека». Экспериментальная геронтология . 39 (4): 517–524. дои : 10.1016/j.exger.2003.09.024 . ПМИД 15050285 . S2CID 2954461 .
- ^ Малек Т.Р., Байер А.Л. (сентябрь 2004 г.). «Толерантность, а не иммунитет, решающим образом зависит от ИЛ-2». Обзоры природы. Иммунология . 4 (9): 665–674. дои : 10.1038/nri1435 . ПМИД 15343366 . S2CID 8449323 .
- ^ Аспиналл Р., Эндрю Д. (июль 2000 г.). «Инволюция тимуса при старении». Журнал клинической иммунологии . 20 (4): 250–256. дои : 10.1023/А:1006611518223 . ПМИД 10939712 . S2CID 25042349 .
- ^ Мин Х., Монтесино-Родригес Э., Доршкинд К. (июль 2004 г.). «Снижение потенциала развития внутритимических предшественников Т-клеток с возрастом» . Журнал иммунологии . 173 (1): 245–250. дои : 10.4049/jimmunol.173.1.245 . ПМИД 15210781 .
- ^ Хадруп С.Р., Стриндхолл Дж., Кёллгаард Т., Шеремет Т., Йоханссон Б., Павелец Г. и др. (февраль 2006 г.). «Продольные исследования клонально размноженных CD8 Т-клеток выявили сокращение репертуара, предсказывающее смертность, и увеличение количества дисфункциональных цитомегаловирус-специфичных Т-клеток у очень пожилых людей» . Журнал иммунологии . 176 (4): 2645–2653. дои : 10.4049/jimmunol.176.4.2645 . ПМИД 16456027 .
- ^ Jump up to: а б с д Фёрингер Д., Кошелла М., Пирчер Х. (ноябрь 2002 г.). «Отсутствие пролиферативной способности эффекторных Т-клеток и Т-клеток памяти человека, экспрессирующих лектиноподобный рецептор G1 клеток-киллеров (KLRG1)» . Кровь . 100 (10): 3698–3702. дои : 10.1182/кровь-2002-02-0657 . ПМИД 12393723 .
- ^ Лефевр Дж.С., Мауэ А.С., Итон С.М., Лантье П.А., Тайг М., Хейнс Л. (октябрь 2012 г.). «Старое микроокружение способствует возрастным функциональным дефектам CD4 Т-клеток у мышей» . Стареющая клетка . 11 (5): 732–740. дои : 10.1111/j.1474-9726.2012.00836.x . ПМЦ 3444657 . ПМИД 22607653 .
- ^ Фюлоп Т., Ганье Д., Гуле А.С., Дежорж С., Лакомб Г., Аркан М., Дюпюи Г. (апрель 1999 г.). «Возрастное нарушение активности p56lck и ZAP-70 в Т-лимфоцитах человека, активированных посредством комплекса TcR/CD3». Экспериментальная геронтология . 34 (2): 197–216. дои : 10.1016/S0531-5565(98)00061-8 . ПМИД 10363787 . S2CID 42659829 .
- ^ Jump up to: а б Мурсиано К., Вильямон Э., Яньес А., О'Коннор Дж.Э., Госальбо Д., Хиль М.Л. (декабрь 2006 г.). «Нарушение иммунного ответа на Candida albicans у старых мышей» . Журнал медицинской микробиологии . 55 (Часть 12): 1649–1656. дои : 10.1099/jmm.0.46740-0 . ПМИД 17108267 .
- ^ Jump up to: а б Оуян К., Вагнер В.М., Фёрингер Д., Викби А., Клатт Т., Уолтер С. и др. (август 2003 г.). «Возрастное накопление ЦМВ-специфичных CD8+ Т-клеток, экспрессирующих ингибирующий лектиноподобный рецептор G1 клеток-киллеров (KLRG1)». Экспериментальная геронтология . 38 (8): 911–920. дои : 10.1016/S0531-5565(03)00134-7 . ПМИД 12915213 . S2CID 44591282 .
- ^ Jump up to: а б Нэйлор К., Ли Г., Вальехо А.Н., Ли В.В., Кетц К., Брил Э. и др. (июнь 2005 г.). «Влияние возраста на поколение Т-клеток и разнообразие TCR» . Журнал иммунологии . 174 (11): 7446–7452. дои : 10.4049/jimmunol.174.11.7446 . ПМИД 15905594 .
- ^ Jump up to: а б Венг НП (май 2006 г.). «Старение иммунной системы: насколько адаптивная иммунная система может адаптироваться?» . Иммунитет . 24 (5): 495–499. doi : 10.1016/j.immuni.2006.05.001 . ПМК 2266981 . ПМИД 16713964 .
- ^ Хафф WX, Квон Дж. Х., Энрикес М., Фетко К., Дей М. (июнь 2019 г.). «Развивающаяся роль CD8 + CD28 − Иммуностареющие Т-клетки в иммунологии рака» . Международный журнал молекулярных наук . 20 (11): 2810. doi : 10.3390/ . PMC 6600236. . PMID 31181772 ijms20112810
- ^ Мансер А.Р., Урберг М. (апрель 2016 г.). «Возрастные изменения в репертуаре естественных киллеров: влияние на функцию NK-клеток и иммунный надзор» . Иммунология рака, иммунотерапия . 65 (4): 417–426. дои : 10.1007/s00262-015-1750-0 . ПМК 11028690 . ПМИД 26288343 . S2CID 32642259 .
- ^ Ян О.О., Лин Х., Дагараг М., Нг Х.Л., Эффрос Р.Б., Уиттенбогаарт CH (февраль 2005 г.). «Снижение экспрессии перфорина и гранзима B в стареющих ВИЧ-1-специфичных цитотоксических Т-лимфоцитах» . Вирусология . 332 (1): 16–19. дои : 10.1016/j.virol.2004.11.028 . ПМИД 15661136 .
- ^ Сундеркоттер С., Кальден Х., Люгер Т.А. (октябрь 1997 г.). «Старение и иммунная система кожи». Архив дерматологии . 133 (10): 1256–1262. дои : 10.1001/archderm.133.10.1256 . ПМИД 9382564 .
- ^ Шиматани К., Накашима Ю., Хаттори М., Хамазаки Ю., Минато Н. (сентябрь 2009 г.). «Фенотип памяти PD-1+ CD4+ Т-клетки, экспрессирующие C/EBPalpha, лежат в основе Т-клеточной иммунодепрессии при старении и лейкемии» . Труды Национальной академии наук Соединенных Штатов Америки . 106 (37): 15807–15812. Бибкод : 2009PNAS..10615807S . дои : 10.1073/pnas.0908805106 . ПМЦ 2739871 . ПМИД 19805226 .
- ^ Хенсон С.М., Ланна А., Ридделл Н.Э., Францезе О., Маколей Р., Гриффитс С.Дж. и др. (сентябрь 2014 г.). «Передача сигналов p38 ингибирует mTORC1-независимую аутофагию в стареющих CD8⁺ Т-клетках человека» . Журнал клинических исследований . 124 (9): 4004–4016. дои : 10.1172/JCI75051 . ПМК 4151208 . ПМИД 25083993 .
- ^ Тахир С., Фукусима И., Сакамото К., Сато К., Фудзита Х., Иноуэ Дж. и др. (июнь 2015 г.). «Популяция фолликулярных клеток CD153 + CD4 + T с признаками клеточного старения играет решающую роль в патогенезе волчанки посредством продукции остеопонтина». Журнал иммунологии . 194 (12): 5725–5735. doi : 10.4049/jimmunol.1500319 . HDL : 2433/202671 . ПМИД 25972477 . S2CID 12736294 .
- ^ Ван Ю.Х., Юй XH, Луо СС, Хан Х (08.10.2015). «Комплексное профилирование кольцевой РНК показывает, что кольцевая РНК100783 участвует в хроническом CD28-ассоциированном старении CD8(+)Т-клеток» . Иммунитет и старение . 12 (1): 17. дои : 10.1186/s12979-015-0042-z . ПМК 4597608 . ПМИД 26451160 .
- ^ Шульц А.Р., Мельцер Й.Н., Доминго С., Юршотт К., Грютцкау А., Бабель Н. и др. (ноябрь 2015 г.). «Низкая активность тимуса и количество дендритных клеток связаны с иммунным ответом на первичную вирусную инфекцию у пожилых людей» . Журнал иммунологии . 195 (10): 4699–4711. doi : 10.4049/jimmunol.1500598 . ПМИД 26459351 . S2CID 24146051 .
- ^ Фуэртес Маррако С.А., Сонесон С., Каньон Л., Ганнон П.О., Аллард М., Абед Майлард С. и др. (апрель 2015 г.). «Долговечные CD8+ Т-клетки памяти, подобные стволовым клеткам, с наивным профилем после вакцинации против желтой лихорадки» . Наука трансляционной медицины . 7 (282): 282ра48. doi : 10.1126/scitranslmed.aaa3700 . ПМИД 25855494 . S2CID 21394251 .
- ^ Чемберс Э.С., Акбар А.Н. (2020). «Может ли блокирование воспаления повысить иммунитет во время старения?». Журнал аллергии и клинической иммунологии . 145 (5): 1323–1331. дои : 10.1016/j.jaci.2020.03.016 . ПМИД 32386656 .
- ^ Ким М.Дж., Миллер К.М., Шадрах Дж.Л., Вейджерс А.Дж., Серволд Т. (май 2015 г.). «Молодые пролиферативные эпителиальные клетки тимуса приживаются и функционируют в стареющем тимусе» . Журнал иммунологии . 194 (10): 4784–4795. doi : 10.4049/jimmunol.1403158 . ПМЦ 4481326 . ПМИД 25870244 .
- ^ Барзилай Н., Крэндалл Дж. П., Кричевский С.Б., Эспеланд М.А. (июнь 2016 г.). «Метформин как средство борьбы со старением» . Клеточный метаболизм . 23 (6): 1060–1065. дои : 10.1016/j.cmet.2016.05.011 . ПМЦ 5943638 . ПМИД 27304507 .
- ^ Кейн Д.А., Андерсон Э.Дж., Прайс Дж.В., Вудлиф Т.Л., Лин К.Т., Бикман Б.Т. и др. (сентябрь 2010 г.). «Метформин избирательно ослабляет митохондриальную эмиссию H2O2, не влияя на дыхательную способность скелетных мышц крыс с ожирением» . Свободно-радикальная биология и медицина . 49 (6): 1082–1087. doi : 10.1016/j.freeradbiomed.2010.06.022 . ПМЦ 2921476 . ПМИД 20600832 .
- ^ Эль-Мир М.Ю., Ногейра В., Фонтен Э., Аверет Н., Ригуле М., Леверв Икс (январь 2000 г.). «Диметилбигуанид ингибирует клеточное дыхание посредством непрямого воздействия, направленного на комплекс I дыхательной цепи» . Журнал биологической химии . 275 (1): 223–228. дои : 10.1074/jbc.275.1.223 . ПМИД 10617608 .
- ^ Мадираджу А.К., Цю Ю., Перри Р.Дж., Рахими Ю., Чжан Х.М., Чжан Д. и др. (сентябрь 2018 г.). «Метформин ингибирует глюконеогенез посредством окислительно-восстановительного механизма in vivo» . Природная медицина . 24 (9): 1384–1394. дои : 10.1038/s41591-018-0125-4 . ПМК 6129196 . ПМИД 30038219 .
- ^ Раджман Л., Чвалек К., Синклер Д.А. (март 2018 г.). «Терапевтический потенциал молекул, усиливающих НАД: данные in vivo» . Клеточный метаболизм . 27 (3): 529–547. дои : 10.1016/j.cmet.2018.02.011 . ПМК 6342515 . ПМИД 29514064 .
- ^ Попович И.Г., Анисимов В.Н., Забежинский М.А., Семенченко А.В., Тындык М.Л., Юрова М.Н., Благосклонный М.В. (май 2014 г.). «Продление продолжительности жизни и профилактика рака у трансгенных мышей HER-2/neu, получавших низкие прерывистые дозы рапамицина» . Биология и терапия рака . 15 (5): 586–592. дои : 10.4161/cbt.28164 . ПМК 4026081 . ПМИД 24556924 .