Память на магнитном сердечнике
памяти компьютера и хранения данных компьютера Типы |
---|
Неустойчивый |
Энергонезависимый |
В технике вычислительной память на магнитном сердечнике является формой оперативной памяти . Она доминировала примерно 20 лет между 1955 и 1975 годами, и ее часто называют просто основной памятью или, неофициально, ядром .
В сердечнике памяти используются тороиды (кольца) из магнитотвердого материала (обычно полутвердый феррит ). Каждое ядро хранит один бит информации. Через каждую жилу проходят два или более провода, образуя массив жил XY. Когда к проводам прикладывается электрический ток выше определенного порога, сердечник намагничивается. Ядро, которому будет присвоено значение (или записано ), выбирается путем подачи питания на один провод X и один провод Y на половину требуемой мощности, так что записывается только одно ядро на пересечении. В зависимости от направления токов сердечник будет воспринимать магнитное поле по или против часовой стрелки, сохраняя 1 или 0.
Этот процесс записи также вызывает индуцирование электричества в близлежащих проводах. Если новый импульс, приложенный к проводам XY, такой же, как последний, приложенный к этому сердечнику, существующее поле не будет действовать, и индукции не произойдет. Если новый импульс направлен в противоположном направлении, импульс будет сгенерирован. Обычно это улавливается по отдельному «чувствительному» проводу, что позволяет системе узнать, содержит ли это ядро 1 или 0. Поскольку для этого процесса считывания требуется запись ядра, этот процесс известен как деструктивное считывание и требует дополнительных схем. для сброса ядра к исходному значению, если процесс перевернул его.
Когда ядра не читаются и не записываются, они сохраняют последнее значение, которое они имели, даже если питание отключено. Следовательно, они являются разновидностью энергонезависимой памяти . В зависимости от того, как она была подключена, основная память могла быть исключительно надежной. постоянная память основного каната Например, использовалась на критически важном компьютере управления Аполлоном, необходимом для . успешных высадок НАСА на Луну [ 1 ]
При использовании меньших ядер и проводов плотность памяти ядра медленно увеличивалась. К концу 1960-х годов типичная плотность составляла около 32 килобит на кубический фут (около 0,9 килобит на литр). Стоимость за этот период снизилась примерно с 1 доллара за бит до примерно 1 цента за бит. Достижение такой плотности требует чрезвычайно тщательного производства, которое почти всегда выполнялось вручную, несмотря на неоднократные серьезные усилия по автоматизации процесса. Core был почти универсальным до появления первых микросхем полупроводниковой памяти в конце 1960-х годов и особенно динамической памяти с произвольным доступом (DRAM) в начале 1970-х годов. Первоначально DRAM стоила примерно столько же, сколько ядро, но была меньше и проще в использовании. Core постепенно вытеснялся с рынка в период с 1973 по 1978 год.
Хотя основная память устарела, компьютерную память до сих пор иногда называют «ядром», хотя она сделана из полупроводников, особенно людьми, которые работали с машинами, имеющими настоящую основную память. Файлы, образующиеся в результате сохранения всего содержимого памяти на диск для проверки, которая в настоящее время обычно выполняется автоматически при возникновении серьезной ошибки в компьютерной программе, до сих пор называются « дампами ядра ».
История
[ редактировать ]Разработчики
[ редактировать ]Основная концепция использования квадратной петли гистерезиса некоторых магнитных материалов в качестве запоминающего или переключающего устройства была известна с самых первых дней разработки компьютеров. Большая часть этих знаний возникла благодаря пониманию работы трансформаторов , которые позволяли усиливать и переключать характеристики при изготовлении с использованием определенных материалов. Стабильное поведение переключения было хорошо известно в области электротехники , и его применение в компьютерных системах было немедленно. Например, Дж. Преспер Эккерт и Джеффри Чуан Чу провели некоторую работу по разработке этой концепции в 1945 году в Школе Мура во время работы над ENIAC . [ 2 ]
Пионер робототехники Джордж Девол подал патент [ 3 ] для первой статической (неподвижной) магнитной памяти 3 апреля 1946 года. Магнитная память Девола была усовершенствована посредством пяти дополнительных патентов. [ 4 ] [ 5 ] [ 6 ] [ 7 ] [ 8 ] и в конечном итоге использован в первом промышленном роботе . Фредерик Вие подал заявку на получение различных патентов на использование трансформаторов для построения цифровых логических схем вместо релейной логики , начиная с 1947 года. Полностью разработанная базовая система была запатентована в 1947 году, а затем приобретена IBM в 1956 году. [ 9 ] Однако эта разработка была малоизвестной, и основная разработка ядра обычно связана с тремя независимыми командами.
Существенную работу в этой области провели Шанхае , родившиеся в американские физики Ан Ван и Вэй-Донг Ву , которые в 1949 году создали устройство управления передачей импульсов . [ 10 ] В патенте описывался тип памяти, который сегодня будет известен как система с линией задержки или сдвиговым регистром . Каждый бит сохранялся с помощью пары преобразователей: один хранил значение, а второй использовался для управления. Генератор сигналов произвел серию импульсов, которые были отправлены в управляющие трансформаторы с половиной энергии, необходимой для изменения полярности. Импульсы были рассчитаны так, чтобы поле в трансформаторах не исчезло до прихода следующего импульса. Если поле накопительного трансформатора соответствует полю, создаваемому импульсом, то общая энергия приведет к подаче импульса в следующую пару трансформаторов. Те, которые не содержали значения, просто исчезли. Таким образом, сохраненные значения постепенно перемещались вниз по цепочке с каждым импульсом. Значения считывались в конце и возвращались в начало цепочки, чтобы значения постоянно перемещались по системе. [ 11 ] Недостатком таких систем является то, что они не имеют произвольного доступа: чтобы прочитать какое-либо конкретное значение, нужно дождаться, пока оно пройдет через цепочку. В то время Ван и Ву работали в вычислительной лаборатории Гарвардского университета , и университет не был заинтересован в продвижении изобретений, созданных в их лабораториях. Ван смог самостоятельно запатентовать систему.
Компьютеру MIT Project Whirlwind требовалась быстрая система памяти для отслеживания самолетов в реальном времени . Сначала использовался массив трубок Вильямса — система хранения данных на основе электронно-лучевых трубок , но она оказалась капризной и ненадежной. Несколько исследователей в конце 1940-х годов задумали использовать магнитные сердечники для компьютерной памяти, но компьютерный инженер Массачусетского технологического института Джей Форрестер получил основной патент на свое изобретение основной памяти с совпадающими токами, которая позволяла хранить информацию в трехмерном пространстве. [ 12 ] [ 13 ] Уильям Папиан из Project Whirlwind процитировал одну из этих попыток, Гарвардскую «Статическую магнитную линию задержки», во внутренней записке. Первая основная память размером 32 × 32 × 16 бит была установлена на Whirlwind летом 1953 года. Папян заявил: «Магнитное хранилище имеет два больших преимущества: (1) более высокая надежность с последующим сокращением времени обслуживания, затрачиваемого на хранение; (2) более короткое время доступа (время доступа к ядру составляет 9 микросекунд; время доступа к трубке составляет примерно 25 микросекунд), что увеличивает скорость работы компьютера». [ 14 ]
В апреле 2011 года Форрестер вспоминал: «Использование ядер Вангом не оказало никакого влияния на мою разработку оперативной памяти. Память Ванга была дорогой и сложной. Насколько я помню, что может быть не совсем верно, в ней использовались два ядра. на двоичный бит и, по сути, представлял собой линию задержки, которая немного сдвинулась вперед. Насколько я мог сосредоточиться на этом, этот подход не подходил для наших целей». Он описывает изобретение и связанные с ним события 1975 года. [ 15 ] С тех пор Форрестер заметил: «Нам потребовалось около семи лет, чтобы убедить отрасль в том, что память с произвольным доступом на магнитных сердечниках является решением недостающего звена в компьютерных технологиях. Затем мы провели следующие семь лет в патентных судах, убеждая их, что они не все сначала подумали об этом». [ 16 ]
Третьим разработчиком, участвовавшим в ранней разработке ядра, был Ян А. Райхман из RCA . Плодовитый изобретатель, Райхман разработал уникальную систему сердечников с использованием ферритовых лент, обернутых вокруг тонких металлических трубок. [ 17 ] построил свои первые образцы с использованием переоборудованного пресса для аспирина в 1949 году. [ 9 ] Позже Райхман разработал версии лампы Уильямса и возглавил разработку Selectron . [ 18 ]
Два ключевых изобретения привели к разработке памяти на магнитных сердечниках в 1951 году. Первое, изобретение Ань Вана, было циклом записи после чтения, который решил проблему использования носителя информации, на котором в процессе чтения стирались считанные данные. , позволяющий создавать последовательный одномерный сдвиговый регистр (50 бит), использующий два ядра для хранения бита. Сдвиговый регистр ядра Вана находится на выставке Revolution в Музее истории компьютеров . Вторая, разработанная Форрестером, представляла собой систему совмещенного тока, которая позволяла с помощью небольшого количества проводов управлять большим количеством ядер, создавая трехмерные массивы памяти размером в несколько миллионов бит. Первое использование магнитного сердечника было в компьютере Whirlwind. [ 19 ] и «самым известным вкладом Project Whirlwind стала функция хранения данных на магнитных сердечниках с произвольным доступом». [ 20 ] Коммерциализация последовала быстро. Магнитный сердечник использовался в периферийных устройствах ENIAC в 1953 году. [ 21 ] IBM 702 [ 22 ] поставлен в июле 1955 года, а позже и в самом 702-м. IBM 704 (1954 г.) и Ferranti Mercury (1957 г.) использовали память на магнитном сердечнике.
В начале 1950-х годов компания Seeburg Corporation разработала одно из первых коммерческих приложений хранения основной памяти с совпадающими токами в памяти «Tormat» своей новой линейки музыкальных автоматов , начиная с V200, разработанного в 1953 году и выпущенного в 1955 году. [ 23 ] Последовали многочисленные применения в вычислительной технике, телефонии и управлении промышленными процессами .
Патентные споры
[ редактировать ]Патент Ванга не был выдан до 1955 года, и к тому времени память на магнитных сердечниках уже использовалась. Это положило начало длинной серии судебных процессов, которые в конечном итоге закончились, когда IBM полностью выкупила патент у Ванга за 500 000 долларов США . [ 24 ] Ван использовал полученные средства для значительного расширения Wang Laboratories , которую он основал вместе с доктором Гэ-Яо Чу, одноклассником из Китая.
MIT хотел взимать с IBM гонорар в размере 0,02 доллара за бит основной памяти. В 1964 году, после многих лет судебных тяжб, IBM заплатила MIT 13 миллионов долларов за права на патент Форрестера — крупнейшее урегулирование патентного спора на тот момент. [ 25 ] [ 26 ]
Экономика производства
[ редактировать ]В 1953 году испытанные, но еще не натянутые сердечники стоили 0,33 доллара США каждый. По мере увеличения объема производства к 1970 году IBM производила 20 миллиардов ядер в год, а цена за ядро упала до 0,0003 доллара США . Размеры ядра за тот же период сократились с диаметра примерно 0,1 дюйма (2,5 мм) в 1950-х годах до 0,013 дюйма (0,33 мм) в 1966 году. [ 27 ] Мощность, необходимая для перемагничивания одного сердечника, пропорциональна объему, поэтому это означает снижение энергопотребления в 125 раз.
В стоимости полных систем памяти с ядром преобладала стоимость прокладки проводов через ядра. Система совпадающих токов Форрестера требовала, чтобы один из проводов был проложен под углом 45 градусов к сердечникам, что оказалось затруднительно соединить с помощью машины, поэтому массивы сердечников приходилось собирать под микроскопами работникам с точным управлением моторикой.
В 1956 году группа из IBM подала заявку на патент на машину, которая автоматически пропускала первые несколько проводов через каждое ядро. Эта машина удерживала всю плоскость сердечников в «гнезде», а затем проталкивала через сердечники множество полых игл, чтобы направлять провода. [ 28 ] Использование этой машины сократило время, необходимое для прокладки прямых линий выбора X и Y, с 25 часов до 12 минут на основном массиве 128 на 128. [ 29 ]
Стержни меньшего размера сделали использование полых игл непрактичным, но в полуавтоматической заправке стержней были достигнуты многочисленные успехи. Разработаны опорные гнезда с направляющими каналами. Сердечники были постоянно прикреплены к «заплатке» из подложки, которая поддерживала их во время производства и последующего использования. Иглы для заправки нити были приварены к проволоке встык, диаметры иглы и проволоки были одинаковыми, и были предприняты усилия по исключению использования игл. [ 30 ] [ 31 ]
Самым важным изменением, с точки зрения автоматизации, стало объединение сенсорных и запрещающих проводов, что устранило необходимость в схематическом диагональном сенсорном проводе. С небольшими изменениями в компоновке это также позволило более плотно упаковать ядра в каждом патче. [ 32 ] [ 33 ]
К началу 1960-х годов стоимость ядра упала до такой степени, что оно стало почти универсальным в качестве основной памяти , заменив как недорогую низкопроизводительную барабанную память , так и дорогостоящие высокопроизводительные системы, использующие электронные лампы , а позже и дискретные транзисторы в качестве памяти. Стоимость основной памяти резко снизилась за время существования технологии: стоимость началась примерно с 1,00 доллара США за бит и упала примерно до 0,01 доллара США за бит.
Базовая память устарела из -за полупроводниковых интегральных схем памяти в 1970-х годах, но продолжала использоваться для критически важных и высоконадежных приложений в IBM System / 4 Pi AP-101 (использовалась в космическом корабле "Шаттл" до модернизации в начале 1990-х годов). и бомбардировщики B-52 и B-1B ). [ 34 ] [ 35 ] [ 36 ]
Примером масштаба, экономики и технологии основной памяти 1960-х годов было 36-битное слово размером 256 КБ (1,2 МБ). [ 37 ] ) основной блок памяти, установленный на PDP-6 в Лаборатории искусственного интеллекта Массачусетского технологического института в 1967 году. [ 38 ] В то время это считалось «невообразимо огромным» и получило прозвище «Память Моби». [ 39 ] Он стоил 380 000 долларов (0,04 доллара за бит), а его ширина, высота и глубина составляли 175 см × 127 см × 64 см (69 дюймов × 50 дюймов × 25 дюймов) с вспомогательной схемой (189 килобит / кубический фут = 6,7 килобит / литр). . Время его цикла составляло 2,75 мкс. [ 40 ] [ 41 ] [ 42 ]
В 1980 году цена основной платы памяти мощностью 16 кВт ( килослово , что эквивалентно 32 КБ), которая устанавливалась в компьютер DEC Q-bus, составляла около 3000 долларов США . В то время массив сердечников и вспомогательная электроника могли поместиться на одной печатной плате размером примерно 25 × 20 см (10 × 8 дюймов), массив сердечников монтировался на несколько мм выше печатной платы и был защищен металлическим кожухом. или пластиковая тарелка. [ нужна ссылка ]
Описание
[ редактировать ]Термин «сердечник» происходит от обычных трансформаторов , обмотки которых окружают магнитный сердечник . В основной памяти провода проходят через любое ядро один раз — это одновитковые устройства. Свойства материалов, используемых для ядер памяти, кардинально отличаются от тех, которые используются в силовых трансформаторах. Магнитный материал для сердечника памяти требует высокой степени магнитной остаточной намагниченности , способности оставаться сильно намагниченными и низкой коэрцитивной силы , поэтому для изменения направления намагничивания требуется меньше энергии. Ядро может принимать два состояния, кодируя один бит . Содержимое основной памяти сохраняется даже при выключении системы памяти ( энергонезависимая память ). Однако при чтении ядра оно сбрасывается на «нулевое» значение. Схемы в системе памяти компьютера затем восстанавливают информацию в ходе немедленного цикла перезаписи.
Как работает основная память
[ редактировать ]Самая распространенная форма памяти с сердечником, линия совмещенного тока X/Y , используемая для основной памяти компьютера, состоит из большого количества небольших тороидальных ферримагнитных керамических ферритов ( сердечников ), скрепленных вместе в решетчатой структуре (организованной в виде «сетки»). «стопка» слоев, называемых плоскостями ), с проводами, вплетенными в отверстия в центрах сердечников. В ранних системах было четыре провода: X , Y , Sense и Inhibit , но более поздние ядра объединили два последних провода в одну Sense/Inhibit . линию [ 32 ] Каждый тороид хранит один бит (0 или 1). Доступ к одному биту в каждой плоскости можно было получить за один цикл, поэтому каждое машинное слово в массиве слов было распределено по «стеку» плоскостей. манипулировать одним битом слова Каждая плоскость будет параллельно , позволяя прочитать или записать полное слово за один цикл.
Сердечник основан на свойствах квадратной петли гистерезиса ферритового материала, из которого изготовлены тороиды. Электрический ток в проводе, проходящем через сердечник, создает магнитное поле. Только магнитное поле , интенсивность которого превышает определенную величину («селект»), может заставить сердечник изменить свою магнитную полярность. Чтобы выбрать ячейку памяти, на одну из линий X и одну из линий Y подается половина тока («полувыбор»), необходимого для вызова этого изменения. Только объединенное магнитное поле, создаваемое в месте пересечения линий X и Y ( логическая И функция ), достаточно для изменения состояния; другие ядра будут видеть только половину необходимого поля («выбрано наполовину») или не видеть вообще. Пропуская ток по проводам в определенном направлении, возникающее индуцированное поле заставляет магнитный поток выбранного сердечника циркулировать в одном или другом направлении (по часовой стрелке или против часовой стрелки). Одно направление — это сохраненный 1 , а другое — сохраненный 0 .
Тороидальная форма сердечника предпочтительна, поскольку магнитный путь замкнут, нет магнитных полюсов и, следовательно, внешний поток очень мал. Это позволяет сердечникам располагаться близко друг к другу без взаимодействия их магнитных полей. Попеременное расположение под углом 45 градусов, использовавшееся в ранних массивах ядер, было обусловлено наличием диагональных сенсорных проводов. Благодаря устранению этих диагональных проводов стала возможной более плотная упаковка. [ 33 ]
Чтение и письмо
[ редактировать ]Время доступа плюс время перезаписи составляет время цикла памяти .
Чтение
[ редактировать ]Чтобы прочитать часть памяти ядра, схема пытается переключить бит в полярность, присвоенную состоянию 0, управляя выбранными линиями X и Y, которые пересекаются в этом ядре.
- Если бит уже равен 0, физическое состояние ядра не изменяется.
- Если бит ранее был 1, то сердечник меняет магнитную полярность. Это изменение после задержки вызывает появление импульса напряжения в линии Sense.
Обнаружение такого импульса означает, что последний раз бит содержал 1. Отсутствие импульса означает, что бит содержал 0. Задержка в обнаружении импульса напряжения называется временем доступа к основной памяти.
После любого такого чтения бит содержит 0. Это иллюстрирует, почему доступ к памяти ядра называется деструктивным чтением : любая операция по чтению содержимого ядра стирает это содержимое, и оно должно быть немедленно воссоздано.
Письмо
[ редактировать ]Чтобы записать бит основной памяти, схема предполагает, что произошла операция чтения и бит находится в состоянии 0.
- Для записи 1 бита выбранные линии X и Y активируются, причем ток движется в противоположном направлении, как при операции чтения. Как и при чтении, ядро на пересечении линий X и Y меняет магнитную полярность.
- Для записи нулевого бита можно применить два метода. Первый аналогичен процессу чтения с током в исходном направлении. Второе имеет обратную логику. Другими словами, запись 0 бита означает запрет записи 1 бита. Такая же величина тока также передается через линию запрета. Это уменьшает чистый ток, протекающий через соответствующий сердечник, до половины выбранного тока, препятствуя изменению полярности.
Комбинированное чувство и торможение
[ редактировать ]Провод Sense используется только во время чтения, а провод Inhibit используется только во время записи. По этой причине более поздние базовые системы объединили их в один провод и использовали схему в контроллере памяти для переключения функций провода.
Однако, когда провод Sense пересекает слишком много жил, ток половинного выбора также может вызвать значительное напряжение во всей линии из-за суперпозиции напряжения на каждой отдельной жиле. Этот потенциальный риск «неправильного считывания» ограничивает минимальное количество проводов Sense.
Увеличение количества проводов Sense также требует большего количества схем декодирования.
Комбинированное чтение и запись с изменением
[ редактировать ]Контроллеры памяти ядра были спроектированы таким образом, что за каждым чтением немедленно следовала запись (потому что чтение приводило все биты в 0, а запись предполагала, что это произошло). Наборы инструкций были разработаны с учетом этого.
Например, значение в памяти может быть прочитано и изменено почти так же быстро, как оно может быть прочитано и записано. В PDP- 6 AOS*
(или SOS*
) инструкции увеличивали (или уменьшали) значение между фазой чтения и фазой записи одного цикла памяти (возможно, сигнализируя контроллеру памяти о необходимости короткой паузы в середине цикла). Это может быть в два раза быстрее, чем процесс получения значения с помощью цикла чтения-записи, увеличения (или уменьшения) значения в каком-либо регистре процессора, а затем записи нового значения с помощью другого цикла чтения-записи.
Другие формы основной памяти
[ редактировать ]Основная память строк слов часто использовалась для обеспечения регистровой памяти. Другие названия этого типа — линейный выбор и 2-D . Эта форма основной памяти обычно прокладывает три провода через каждое ядро на плоскости: чтение слов , запись слов и считывание/запись битов . Чтобы прочитать или очистить слова, полный ток подается на одну или несколько строк чтения слов ; это очищает выбранные ядра и все, что инвертирует импульсы напряжения в их линиях чтения/записи битов . Для чтения обычно чтения слова выбирается только одна строка ; но для ясности чтения слов можно выбрать несколько строк , в то время как строки чтения/записи битов игнорируются. Для записи слов половинный ток подается на одну или несколько линий записи слов , а половинный ток подается на каждую линию чтения/записи бита для установки бита. В некоторых конструкциях линии чтения и записи слов были объединены в один провод, в результате чего в массиве памяти было всего два провода на бит. Для записи записи слов можно выбрать несколько строк . Это давало преимущество в производительности по сравнению с системами совпадающего тока линий X/Y. в том, что несколько слов могут быть очищены или записаны с одним и тем же значением за один цикл. В наборе регистров типичной машины обычно использовалась только одна небольшая плоскость этой формы основной памяти. Некоторые очень большие запоминающие устройства были построены с использованием этой технологии, например, вспомогательная память Extended Core Storage (ECS) в CDC 6600 , которая содержала до 2 миллионов 60-битных слов.
Память сердечника веревки
[ редактировать ]Память ядра — это постоянная память (ПЗУ) в виде основной памяти. В этом случае сердечники, в которых было больше линейных магнитных материалов, просто использовались в качестве трансформаторов ; никакая информация фактически не хранилась магнитно внутри отдельных сердечников. Каждый бит слова имел одно ядро. Чтение содержимого данного адреса памяти генерировало импульс тока в проводе, соответствующем этому адресу. Каждый адресный провод был пропущен либо через ядро, чтобы обозначить двоичный код [1], либо вокруг этого ядра, чтобы обозначить двоичный номер [0]. Как и ожидалось, физически ядра были намного больше, чем ядра памяти для чтения и записи. Этот тип памяти был исключительно надежным. Примером может служить управляющий компьютер Аполлона при , который использовался НАСА посадке на Луну.
Физические характеристики
[ редактировать ]Скорость
[ редактировать ]Производительность ранних модулей памяти можно охарактеризовать в сегодняшних терминах как примерно сопоставимую с тактовой частотой 1 МГц (что эквивалентно домашним компьютерам начала 1980-х годов, таким как Apple II и Commodore 64 ). Ранние системы памяти с ядром имели время цикла около 6 мкс , которое к началу 1970-х годов упало до 1,2 мкс, а к середине 70-х годов оно снизилось до 600 нс (0,6 мкс). Некоторые конструкции имели значительно более высокую производительность: CDC 6600 имел время цикла памяти 1,0 мкс в 1964 году, используя ядра, которым требовался ток полувыбора 200 мА. [ 43 ] Было сделано все возможное, чтобы уменьшить время доступа и увеличить скорость передачи данных (пропускную способность), включая одновременное использование нескольких сеток ядра, каждая из которых хранит один бит слова данных. Например, машина может использовать 32 сетки ядра с одним битом 32-битного слова в каждой, а контроллер может получить доступ ко всему 32-битному слову за один цикл чтения/записи.
Надежность
[ редактировать ]Основная память — это энергонезависимое хранилище — она может хранить свое содержимое неопределенно долго без питания. Он также относительно не подвержен влиянию ЭМИ и радиации. первого поколения Это были важные преимущества для некоторых приложений, таких как промышленные программируемые контроллеры , военные объекты и транспортные средства, такие как истребители , а также космические корабли , и привели к использованию ядра в течение ряда лет после появления полупроводниковой МОП-памяти (см. Также MOSFET ). . Например, бортовые компьютеры космического корабля IBM AP-101B использовали базовую память, которая сохраняла содержимое памяти даже после распада « Челленджера » и последующего падения в море в 1986 году. [ 44 ]
Чувствительность к температуре
[ редактировать ]Другой характеристикой раннего ядра было то, что коэрцитивная сила была очень чувствительна к температуре; правильный ток полувыбора при одной температуре не является правильным током полувыбора при другой температуре. Таким образом, контроллер памяти будет включать в себя датчик температуры (обычно термистор ) для правильной регулировки уровней тока в зависимости от изменений температуры. Примером этого является основная память, используемая Digital Equipment Corporation для своего PDP-1 компьютера ; эта стратегия продолжалась во всех последующих системах базовой памяти, созданных DEC для линейки компьютеров PDP с воздушным охлаждением.
Другой метод управления температурной чувствительностью заключался в помещении «стопки» магнитных сердечников в печь с контролируемой температурой. Примерами этого являются базовая память IBM 1620 которой может потребоваться до 30 минут с подогревом воздуха (для достижения рабочей температуры с подогревом масляной ванны) , около 106 ° F (41 ° C), а также базовая память IBM 7090 . ранние IBM 7094 и IBM 7030 Core нагревались, а не охлаждались, потому что основным требованием была постоянная температура, и было проще (и дешевле) поддерживать постоянную температуру, значительно превышающую комнатную температуру, чем температуру на уровне или ниже нее.
Диагностика
[ редактировать ]Диагностика аппаратных проблем в основной памяти требовала запуска трудоемких диагностических программ. В то время как быстрый тест проверял, может ли каждый бит содержать единицу и ноль, эта диагностика проверяла основную память с наихудшими шаблонами и должна была работать в течение нескольких часов. Поскольку большинство компьютеров имели только одну плату основной памяти, эти диагностические средства также перемещались по памяти, позволяя проверять каждый бит. Расширенный тест назывался « тест Шму », в котором токи полувыбора изменялись вместе со временем, в которое проверялась чувствительная линия («стробировалась»). График данных этого теста напоминал мультперсонажа по имени « Шму », и это имя прижилось. Во многих случаях ошибки можно было устранить, осторожно постучав по печатной плате с массивом сердечников о стол. Это немного изменило положение жил вдоль проходящих через них проводов и могло решить проблему. Эта процедура требовалась редко, поскольку основная память оказалась очень надежной по сравнению с другими компьютерными компонентами того времени.
-
Эта карта microSDHC вмещает 8 миллиардов байт (8 ГБ). Он основан на разделе памяти на магнитном сердечнике, который использует 64 ядра для хранения восьми байтов. Карта microSDHC вмещает в миллиард раз больше байтов и занимает гораздо меньше физического пространства.
-
Память на магнитном сердечнике, 18 × 24 бита, с четвертью США для масштаба.
-
Память на магнитном сердечнике крупным планом
-
Под углом
См. также
[ редактировать ]- Пузырьковая память
- Дамп ядра
- Память сердечника веревки
- Память линии задержки
- Сегнетоэлектрическая RAM
- Магниторезистивная оперативная память
- Оперативная память (RMM)
- Тонкопленочная память
- Трансфлюксор
- Твисторная память
Ссылки
[ редактировать ]- ^ «Компьютер для Аполлона» . Научный репортер Массачусетского технологического института . 1965. ВГБХ .
- ^ Эккерт, Дж. Преспер (октябрь 1953 г.). «Обзор систем цифровой компьютерной памяти». Труды ИРЭ . 41 (10). США: IEEE: 1393–1406. дои : 10.1109/JRPROC.1953.274316 . ISSN 0096-8390 . S2CID 8564797 .
- ^ США 2590091 , Джордж К. Девол и Эрик Б. Ханселл, «Магнитное запоминающее и считывающее устройство», опубликовано 10 апреля 1956 г.
- ^ США 2741757 , Джордж К. Девол и Эрик Б. Ханселл, «Магнитное запоминающее и считывающее устройство», опубликовано 10 апреля 1956 г.
- ^ США 2926844 , Джордж К. Девол, «Чувствительное устройство для магнитной записи», опубликовано 1 марта 1960 г.
- ^ США 3035253 , Джордж К. Девол, «Магнитные запоминающие устройства», опубликовано 15 мая 1962 г.
- ^ США 3016465 , Джордж К. Девол и Эрик Б. Гензель, «Детекторы совпадений», опубликовано 9 января 1962 г.
- ^ США 3246219 , Джордж К. Девол и Морис Дж. Данн, «Феррорезонансные устройства», опубликовано 12 апреля 1966 г.
- ^ Jump up to: а б Рейли, Эдвин Д. (2003). Вехи развития информатики и информационных технологий . Вестпорт, Коннектикут: Greenwood Press. п. 164 . ISBN 1-57356-521-0 .
- ^ «Интервью Вана, ранние работы Ан Вана в области основных воспоминаний» . Датаматизация . США: Техническое издательство: 161–163. Март 1976 года.
- ^ США 2708722 , Ван, Ан, «Устройство управления передачей импульсов», выдан 17 мая 2020 г.
- ^ Форрестер, Джей В. (1951). «Хранение цифровой информации в трех измерениях с использованием магнитных сердечников». Журнал прикладной физики . 22 (1): 44–48. Бибкод : 1951JAP....22...44F . дои : 10.1063/1.1699817 .
- ^ США 2736880 , Форрестер, Джей В., «Многокоординатное устройство хранения цифровой информации», выдан 28 февраля 1956 г.
- ^ «Вихрь» (PDF) . Отчет Компьютерного музея . Массачусетс: Компьютерный музей: 13. Зима 1983 г. - через Microsoft.
- ^ Эванс, Кристофер (июль 1983 г.). «Разговор: Джей В. Форрестер». Анналы истории вычислительной техники . 5 (3): 297–301. дои : 10.1109/mahc.1983.10081 . S2CID 25146240 .
- ^ Кляйнер, Искусство (4 февраля 2009 г.). «Шок для системы Джея Форрестера» . Обзор Слоана Массачусетского технологического института . НАС . Проверено 1 апреля 2018 г.
- ^ Ян А. Райхман, Магнитная система, патент США № 2 792 563 , выдан 14 мая 1957 г.
- ^ Хиттингер, Уильям (1992). «Ян А. Райхман» . Мемориальные почести . 5 . США: Национальная инженерная академия: 229.
- ^ Хейс, Джон П. (1978). Компьютерная архитектура и организация . Международная книжная компания McGraw-Hill. п. 21. ISBN 0-07-027363-4 .
- ^ Редмонд, Кент К.; Смит, Томас М. (1980). Проект «Вихрь» — история новаторского компьютера . Бедфорд, Массачусетс: Digital Press. п. 215. ИСБН 0932376096 .
- ^ Ауэрбах, Исаак Л. (2 мая 1952 г.). «Система статической магнитной памяти для ENIAC» . Материалы национального собрания ACM 1952 года (Питтсбург) на тему - ACM '52 . стр. 213–222. дои : 10.1145/609784.609813 . ISBN 9781450373623 . S2CID 17518946 .
- ^ Пью, Эмерсон В.; Джонсон, Лайл Р.; Палмер, Джон Х. (1991). Системы IBM 360 и Early 370 . МТИ Пресс. п. 32. ISBN 978-0-262-51720-1 .
- ^ Кларенс Шульц и Джордж Боезен, Селекторы для автоматических фонографов, патент США 2923553A , выдан 2 февраля 1960 г.
- ^ «Ван Ванг продает IBM патент на основную память» . США: Музей истории компьютеров . Проверено 12 апреля 2010 г.
- ^ «Магнитная память» . ЧМ Революция . Музей истории компьютеров . Проверено 1 апреля 2018 г.
- ^ Пью, Джонсон и Палмер 1991 , с. 182
- ^ Пью, Джонсон и Палмер 1991 , стр. 204–6.
- ^ Уолтер П. Шоу и Родерик В. Линк, Метод и устройство для нарезания резьбы на перфорированных изделиях, патент США № 2958126 , выдан 1 ноября 1960 г.
- ^ Баше, Чарльз Дж.; Джонсон, Лайл Р.; Палмер, Джон Х. (1986). Первые компьютеры IBM . Кембридж, Массачусетс: MIT Press. п. 268. ИСБН 0-262-52393-0 .
- ^ Роберт Л. Джадж, Метод и устройство для нарезания резьбы, патент США № 3314131 , выдан 18 апреля 1967 г.
- ^ Рональд А. Бек и Деннис Л. Бреу, Метод натягивания сердечника, патент США № 3 872 581 , выдан 25 марта 1975 г.
- ^ Jump up to: а б Крейтон Д. Барнс и др., Запоминающее устройство с магнитным сердечником, имеющее одну обмотку как для функции измерения, так и для функции запрета, патент США № 3329940 , выданный 4 июля 1967 года.
- ^ Jump up to: а б Виктор Л. Селл и Сайед Алви, Матрица памяти с ядром высокой плотности, патент США № 3 711 839 , выдан 16 января 1973 г.
- ^ «История проекта: память на магнитном сердечнике» . web.mit.edu . Архивировано из оригинала 14 июля 2023 года . Проверено 14 июля 2023 г.
- ^ Норман, П. Гленн (1987), «Новый универсальный компьютер (GPC) AP101S для космического корабля «Шаттл», IEEE Proceedings , 75 (3): 308–319, Bibcode : 1987IEEP..75..308N , doi : 10.1109/PROC.1987.13738 , S2CID 19179436
- ^ Стормонт, ДП; Велган, Р. (23–27 мая 1994 г.). «Управление рисками при модернизации компьютера B-1B» . Материалы Национальной конференции по аэрокосмической и электронике (NAECON'94) . Том. 2. С. 1143–1149. дои : 10.1109/NAECON.1994.332913 . ISBN 0-7803-1893-5 . S2CID 109575632 .
- ^ Внутренняя память Moby Memory имела 40 бит на слово, но они не были доступны процессору PDP-10.
- ^ Проект МАК. Отчет о ходе работы IV. Июль 1966 г. - июль 1967 г. (PDF) (Отчет). Массачусетский технологический институт. п. 18. 681342. Архивировано из оригинала (PDF) 8 мая 2021 года . Проверено 7 декабря 2020 г.
- ^ Эрик С. Рэймонд , Гай Л. Стил , Словарь нового хакера , 3-е издание, 1996 г., ISBN 0262680920 , на основе файла жаргона , sv 'moby', стр. 307
- ^ Память FABRI-TEK Mass Core «Moby» . НАС. 4 августа 1967 г. 102731715 . Проверено 7 декабря 2020 г.
{{cite book}}
:|website=
игнорируется ( помощь ) CS1 maint: отсутствует местоположение издателя ( ссылка ) - ^ Кракауэр, Лоуренс Дж. «Память Моби» . Проверено 7 декабря 2020 г.
- ^ Стивен Леви, Хакеры: Герои компьютерной революции , 2010 (издание к 25-летию), ISBN 1449393748 , с. 98
- ^ «Раздел 4». Руководство по обучению Control Data 6600 . Корпорация Control Data. Июнь 1965 года. Номер документа 60147400.
- ^ «Магнитная память» . США: Национальная лаборатория сильных магнитных полей: Музей электричества и магнетизма. Архивировано из оригинала 10 июня 2010 года.
Внешние ссылки
[ редактировать ]- «Интерактивное руководство — Память на магнитном сердечнике» . Национальная лаборатория сильных магнитных полей . Проверено 27 ноября 2023 г.
- Основная память в Колумбийском университете
- «Магнитные сердечники» . Основы цифрового компьютера (Руководство по скоростному обучению). Командование военно-морского образования и подготовки. 1978. стр. 95–. НАВЕДТРА 10088-Б.
- Основная память PDP-11
- Доступ к основной памяти и другим ранним типам памяти осуществлен 15 апреля 2006 г.
- Совпадающий ток журнала Ferrite Core Memories Byte , июль 1976 г.
- Casio AL-1000 Калькулятор — крупным планом показана память на магнитном сердечнике этого настольного электронного калькулятора середины 1960-х годов.
- Основная память все еще используется в нескольких устройствах в немецком компьютерном музее.
- Вернер, GE; Уэлен, РМ; Локхарт, штат Нью-Йорк; Флакер, RC (март 1967 г.). «Память с ферритовым сердечником 110 наносекунд» (PDF) . Журнал исследований и разработок IBM . 11 (2): 153–161. дои : 10.1147/рд.112.0153 . Архивировано из оригинала (PDF) 26 февраля 2009 года.
- Общие сведения об основной памяти компьютеров