~~~~~~~~~~~~~~~~~~~~ Arc.Ask3.Ru ~~~~~~~~~~~~~~~~~~~~~ 
Номер скриншота №:
✰ 4A543D114F5AF8A5B788449F53290E08__1715599320 ✰
Заголовок документа оригинал.:
✰ Free product - Wikipedia ✰
Заголовок документа перевод.:
✰ Бесплатный продукт — Википедия ✰
Снимок документа находящегося по адресу (URL):
✰ https://en.wikipedia.org/wiki/Free_product_with_amalgamation ✰
Адрес хранения снимка оригинал (URL):
✰ https://arc.ask3.ru/arc/aa/4a/08/4a543d114f5af8a5b788449f53290e08.html ✰
Адрес хранения снимка перевод (URL):
✰ https://arc.ask3.ru/arc/aa/4a/08/4a543d114f5af8a5b788449f53290e08__translat.html ✰
Дата и время сохранения документа:
✰ 20.06.2024 08:08:41 (GMT+3, MSK) ✰
Дата и время изменения документа (по данным источника):
✰ 13 May 2024, at 14:22 (UTC). ✰ 

~~~~~~~~~~~~~~~~~~~~~~ Ask3.Ru ~~~~~~~~~~~~~~~~~~~~~~ 
Сервисы Ask3.ru: 
 Архив документов (Снимки документов, в формате HTML, PDF, PNG - подписанные ЭЦП, доказывающие существование документа в момент подписи. Перевод сохраненных документов на русский язык.)https://arc.ask3.ruОтветы на вопросы (Сервис ответов на вопросы, в основном, научной направленности)https://ask3.ru/answer2questionТоварный сопоставитель (Сервис сравнения и выбора товаров) ✰✰
✰ https://ask3.ru/product2collationПартнерыhttps://comrades.ask3.ru


Совет. Чтобы искать на странице, нажмите Ctrl+F или ⌘-F (для MacOS) и введите запрос в поле поиска.
Arc.Ask3.ru: далее начало оригинального документа

Бесплатный продукт — Википедия Jump to content

Бесплатный продукт

Из Википедии, бесплатной энциклопедии

В математике , особенно в теории групп , свободное произведение — это операция, которая берет две группы G и H и создает новую группу G H . Результат содержит как G , так и H в качестве подгрупп , порождается элементами этих подгрупп и является « универсальной » группой, обладающей этими свойствами, в том смысле, что любые два гомоморфизма из G и H в группу K факторизуются однозначно через гомоморфизм из G H ​​в K. ​ Если одна из групп G и H не тривиальна, свободное произведение всегда бесконечно. Построение свободного произведения по духу аналогично построению свободной группы (универсальной группы с заданным набором образующих).

Бесплатный продукт — это побочный продукт в категории групп . То есть свободный продукт играет в теории групп ту же роль, которую дизъюнктное объединение играет в теории множеств или прямую сумму в теории модулей . Даже если группы коммутативны, их свободное произведение таковым не является, если только одна из двух групп не является тривиальной группой . Следовательно, свободное произведение не является копроизведением в категории абелевых групп .

Свободное произведение важно в алгебраической топологии из-за теоремы Ван Кампена , которая утверждает, что фундаментальная группа объединения , двух линейно связных топологических пространств пересечение которых также линейно связно, всегда является объединенным свободным произведением фундаментальных групп пространств. . В частности, фундаментальная группа клиновой суммы двух пространств (т. е. пространства, полученного соединением двух пространств в одной точке) при определенных условиях, заданных в теореме Зейферта Ван-Кампена, является свободным произведением фундаментальных групп пространства.

Свободные произведения также важны в теории Басса-Серра , изучении групп, действующих автоморфизмами на деревьях . В частности, любая группа, действующая с конечными стабилизаторами вершин на дереве, может быть построена из конечных групп с использованием объединенных свободных произведений и расширений HNN . Используя действие модулярной группы на некоторую мозаику гиперболической плоскости , из этой теории следует, что модулярная группа изоморфна свободному произведению циклических групп порядков 4 и 6, объединенных над циклической группой порядка 2.

Строительство [ править ]

Если G и H — группы, слово в G и H представляет собой последовательность вида

где каждый s i является либо элементом G , либо элементом H . Такое слово можно сократить с помощью следующих операций:

  • Удалите экземпляр идентификационного элемента ( G или H ).
  • Замените пару вида g 1 g 2 ее произведением в G или пару h 1 h 2 ее произведением в H .

Каждое сокращенное слово представляет собой попеременное произведение элементов G и элементов H , например

Свободное произведение G H — это группа, элементами которой являются приведенные слова в G и H при операции конкатенации с последующей редукцией.

Например, если G — бесконечная циклическая группа , а H — бесконечная циклическая группа , то каждый элемент G H является попеременным произведением степеней x на степени y . В этом случае G H изоморфна свободной группе, порожденной x и y .

Презентация [ править ]

Предположим, что

представление G что (где S G — набор образующих, а RG набор отношений), и предположим,

это презентация H. для Затем

То есть G H порождается генераторами для G вместе с генераторами для H , причем отношения состоят из отношений из G вместе с отношениями из H (предположим, что здесь нет конфликтов обозначений, так что это фактически непересекающиеся объединения ).

Примеры [ править ]

Например, предположим, что G — циклическая группа порядка 4,

и H — циклическая группа порядка 5

Тогда G H — бесконечная группа

Поскольку в свободной группе нет отношений, свободным продуктом свободных групп всегда является свободная группа. В частности,

где F n обозначает свободную группу с n образующими.

Другой пример — модульная группа . Он изоморфен свободному произведению двух циклических групп: [1]

Обобщение: бесплатный продукт с объединением [ править ]

Более общая конструкция бесплатного продукта с объединением представляет собой, соответственно, особый вид вытеснения в той же категории . Предполагать и заданы, как и раньше, вместе с мономорфизмами (т.е. гомоморфизмами инъективной группы ):

и

где — некоторая произвольная группа. Начните с бесплатного продукта и примыкать как отношения

для каждого в . Другими словами, возьмем наименьшую нормальную подгруппу из содержащий все элементы в левой части приведенного выше уравнения, которые молчаливо рассматриваются в с помощью включений и в их бесплатном продукте. Бесплатный продукт с объединением и , относительно и , является факторгруппой

Объединение привело к отождествлению между в с в , элемент за элементом. Это конструкция, необходимая для вычисления фундаментальной группы двух связных пространств, соединенных подпространством, связанным по путям, с беря на себя роль фундаментальной группы подпространства. См.: Теорема Зейферта–ван Кампена .

Каррасс и Солитар дали описание подгрупп свободного продукта с объединением. [2] Например, гомоморфизмы из и в факторгруппу которые вызваны и оба инъективны, как и индуцированный гомоморфизм из .

Свободные произведения со слиянием и тесно связанное с ним понятие расширения HNN являются основными строительными блоками теории Басса – Серра групп, действующих на деревьях.

В других ветках [ править ]

Аналогичным образом можно определить свободные произведения других алгебраических структур, отличных от групп, включая алгебры над полем . Свободные произведения алгебр случайных величин играют ту же роль в определении « свободы » в теории свободной вероятности , какую декартовы произведения играют в определении статистической независимости в классической теории вероятностей .

См. также [ править ]

Ссылки [ править ]

  1. ^ Альперин, Роджер К. (апрель 1993 г.). «ПСЛ 2 (Z) = Z 2 * Z 3 ». амер. Математика. Ежемесячно . 100 : 385–386. дои : 10.1080/00029890.1993.11990418 .
  2. ^ А. Каррасс и Д. Солитар (1970) Подгруппы свободного произведения двух групп с объединенной подгруппой , Труды Американского математического общества 150: 227–255.
Arc.Ask3.Ru: конец оригинального документа.
Arc.Ask3.Ru
Номер скриншота №: 4A543D114F5AF8A5B788449F53290E08__1715599320
URL1:https://en.wikipedia.org/wiki/Free_product_with_amalgamation
Заголовок, (Title) документа по адресу, URL1:
Free product - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть, любые претензии не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, денежную единицу можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)