Jump to content

Активное ядро ​​галактики

(Перенаправлено из Активных галактик )

Активное ядро ​​галактики ( АЯГ ) — это компактная область в центре галактики , которая излучает значительное количество энергии во всем электромагнитном спектре , характеристики которой указывают на то, что эта светимость не создается звездами . Такое избыточное незвездное излучение наблюдалось в радио- , микроволновом , инфракрасном , оптическом , ультрафиолетовом , рентгеновском и гамма- диапазонах волн. Галактика, в которой находится АЯГ, называется активной галактикой . Предполагается, что незвездное излучение АЯГ является результатом аккреции вещества сверхмассивной черной дырой в центре родительской галактики.

Активные ядра галактик являются наиболее яркими постоянными источниками электромагнитного излучения во Вселенной и, как таковые, могут использоваться как средство обнаружения удаленных объектов; их эволюция как функция космического времени также накладывает ограничения на модели космоса .

Наблюдаемые характеристики АЯГ зависят от нескольких свойств, таких как масса центральной черной дыры, скорость аккреции газа на черную дыру, ориентация аккреционного диска , степень затемнения ядра пылью , а также наличие или отсутствие форсунок .

Многочисленные подклассы АЯГ были определены на основе их наблюдаемых характеристик; самые мощные АЯГ относят к квазарам . Блазар это АЯГ с джетом, направленным к Земле, в котором излучение джета усиливается за счет релятивистского излучения .

Квазар 3C 273, наблюдаемый космическим телескопом Хаббл . Релятивистская струя 3C 273 появляется слева от яркого квазара, а четыре прямые линии, направленные наружу от центрального источника, представляют собой дифракционные всплески, вызванные оптикой телескопа.

В первой половине 20-го века фотографические наблюдения близлежащих галактик обнаружили некоторые характерные признаки излучения АЯГ, хотя физического понимания природы явления АЯГ еще не было. Некоторые ранние наблюдения включали первое спектроскопическое обнаружение эмиссионных линий ядер NGC 1068 и Мессье 81 Эдвардом Фатом (опубликовано в 1909 году), [1] и открытие струи в Мессье 87 Хибером Кертисом (опубликовано в 1918 году). [2] Дальнейшие спектроскопические исследования, проведенные астрономами, в том числе Весто Слайфером , Милтоном Хьюмасоном и Николасом Мэйоллом , отметили наличие необычных эмиссионных линий в ядрах некоторых галактик. [3] [4] [5] [6] В 1943 году Карл Сейферт опубликовал статью, в которой описал наблюдения близлежащих галактик с яркими ядрами, которые были источниками необычайно широких эмиссионных линий. [7] Галактики, наблюдаемые в рамках этого исследования, включали NGC 1068 , NGC 4151 , NGC 3516 и NGC 7469 . Подобные активные галактики известны как сейфертовские галактики в честь новаторской работы сейферта.

Развитие радиоастрономии стало главным катализатором понимания АЯГ. Одними из самых ранних обнаруженных радиоисточников являются близлежащие активные эллиптические галактики , такие как Мессье 87 и Центавр А. [8] Другой радиоисточник, Лебедь А , был идентифицирован Вальтером Бааде и Рудольфом Минковским как приливно-искажённая галактика с необычным спектром эмиссионных линий , имеющая скорость удаления 16 700 километров в секунду. [9] Радиообследование 3C привело к дальнейшему прогрессу в открытии новых радиоисточников, а также в идентификации источников видимого света, связанных с радиоизлучением. На фотографических изображениях некоторые из этих объектов имели вид почти точечных или квазизвездных и были классифицированы как квазизвездные радиоисточники (позже сокращенно называемые «квазарами»).

Советский армянский астрофизик Виктор Амбарцумян представил активные ядра галактик в начале 1950-х годов. [10] На Сольвеевской конференции по физике в 1958 году Амбарцумян представил доклад, в котором утверждалось, что «взрывы в ядрах галактик вызывают выброс большого количества массы. Чтобы эти взрывы произошли, ядра галактик должны содержать тела огромной массы и неизвестной природы. С этого момента вперед Активные галактические ядра (АЯГ) стали ключевым компонентом в теориях галактической эволюции». [11] Его идея поначалу была принята скептически. [12] [13]

Большим прорывом стало измерение красного смещения квазара 3C 273 , проведенное Маартеном Шмидтом , опубликованное в 1963 году. [14] Шмидт отметил, что если этот объект был внегалактическим (за пределами Млечного Пути , на космологическом расстоянии), то его большое красное смещение 0,158 означало, что это была ядерная область галактики, примерно в 100 раз более мощной, чем другие идентифицированные радиогалактики. Вскоре после этого оптические спектры были использованы для измерения красных смещений растущего числа квазаров, включая 3C 48 , еще более удаленный с красным смещением 0,37. [15]

Огромная светимость этих квазаров, а также их необычные спектральные свойства указывали на то, что их источником энергии не могли быть обычные звезды. Аккреция газа на сверхмассивную черную дыру была предложена в качестве источника энергии квазаров в работах Эдвина Солпитера и Якова Зельдовича в 1964 году. [16] В 1969 году Дональд Линден-Белл предположил, что близлежащие галактики содержат в своих центрах сверхмассивные черные дыры как реликты «мертвых» квазаров, и что аккреция черных дыр была источником энергии для незвездного излучения в близлежащих сейфертовских галактиках. [17] В 1960-х и 1970-х годах ранние рентгеновские астрономические наблюдения показали, что сейфертовские галактики и квазары являются мощными источниками рентгеновского излучения, которое исходит из внутренних областей аккреционных дисков черных дыр.

Сегодня АЯГ являются основной темой астрофизических исследований, как наблюдательных , так и теоретических . Исследования АЯГ включают наблюдательные исследования для обнаружения АЯГ в широком диапазоне светимости и красного смещения, изучение космической эволюции и роста черных дыр, изучение физики аккреции черных дыр и излучения электромагнитного излучения АЯГ, изучение свойств джетов. и истечение вещества из АЯГ, а также влияние аккреции черных дыр и активности квазаров на эволюцию галактик .

UGC 6093 классифицируется как активная галактика, что означает, что она содержит активное галактическое ядро. [18]

С конца 1960-х годов утверждалось, что [19] что АЯГ должно питаться за счет аккреции массы на массивные черные дыры (10 6 до 10 10 раз больше солнечной массы ). AGN компактны и всегда чрезвычайно светятся. Аккреция потенциально может дать очень эффективное преобразование потенциальной и кинетической энергии в излучение, а массивная черная дыра имеет высокую светимость по Эддингтону и, как следствие, может обеспечить наблюдаемую высокую постоянную светимость. В настоящее время считается, что сверхмассивные черные дыры существуют в центрах большинства, если не всех, массивных галактик, поскольку масса черной дыры хорошо коррелирует с дисперсией скоростей галактического балджа ( соотношение M-сигма ) или со светимостью балджа. [20] Таким образом, характеристики, подобные АЯГ, ожидаются всякий раз, когда запас материала для аккреции попадает в сферу влияния центральной черной дыры.

Аккреционный диск

[ редактировать ]

В стандартной модели АЯГ холодный материал вблизи черной дыры образует аккреционный диск . Диссипативные процессы в аккреционном диске переносят вещество внутрь, а угловой момент наружу, вызывая при этом нагрев аккреционного диска. Ожидаемый спектр аккреционного диска достигает максимума в оптическом ультрафиолетовом диапазоне волн; кроме того, корона над аккреционным диском образуется по методу обратного Комптона из горячего материала, которая может рассеивать фотоны до энергии рентгеновских лучей. Излучение аккреционного диска возбуждает холодный атомный материал вблизи черной дыры, а тот, в свою очередь, излучает определенные эмиссионные линии . Большая часть излучения АЯГ может быть скрыта межзвездным газом и пылью вблизи аккреционного диска, но (в установившейся ситуации) оно будет переизлучаться в каком-то другом диапазоне волн, скорее всего, в инфракрасном.

Релятивистские джеты

[ редактировать ]
, сделанный космическим телескопом «Хаббл» Снимок струи длиной 5000 световых лет , выброшенной из активной галактики M87 . Голубое синхротронное излучение контрастирует с желтым светом звезд родительской галактики.

Некоторые аккреционные диски производят струи двойных, сильно коллимированных и быстрых потоков, которые возникают в противоположных направлениях вблизи диска. Направление выброса струи определяется либо осью углового момента аккреционного диска, либо осью вращения черной дыры. Механизм образования струи, а также ее состав в очень малых масштабах в настоящее время не изучены из-за слишком низкой разрешающей способности астрономических инструментов. Наиболее очевидные наблюдательные эффекты джеты оказывают в радиоволновом диапазоне, где интерферометрия со сверхдлинной базой может использоваться для изучения синхротронного излучения, которое они излучают с разрешением субпарсековых масштабов . Однако они излучают во всех диапазонах волн, от радио до диапазона гамма-излучения посредством синхротрона и процесса обратного комптоновского рассеяния , и поэтому струи АЯГ являются вторым потенциальным источником любого наблюдаемого континуального излучения.

Радиационно неэффективный АЯГ

[ редактировать ]

Существует класс «радиационно неэффективных» решений уравнений, управляющих аккрецией. Существует несколько теорий, но наиболее широко известной из них является аккреционный поток с преобладанием адвекции (ADAF). [21] В этом типе аккреции, который важен для темпов аккреции значительно ниже предела Эддингтона , аккрецирующая материя не образует тонкий диск и, следовательно, не излучает эффективно энергию, которую она приобрела, приближаясь к черной дыре. Радиационно-неэффективная аккреция использовалась для объяснения отсутствия сильного излучения типа АЯГ от массивных черных дыр в центрах эллиптических галактик в скоплениях, где в противном случае мы могли бы ожидать высоких темпов аккреции и, соответственно, высокой светимости. [22] Ожидается, что радиационно неэффективный АЯГ будет лишен многих характерных особенностей стандартного АЯГ с аккреционным диском.

Ускорение частиц

[ редактировать ]

высоких и сверхвысоких энергий АЯГ — кандидатный источник космических лучей (см. также Центробежный механизм ускорения ) .

Наблюдательные характеристики

[ редактировать ]

Среди множества интересных характеристик АЯГ: [23]

Типы активной галактики

[ редактировать ]

АЯГ удобно разделить на два класса, условно названные радиотихими и радиогромкими. Радиогромкие объекты имеют вклад в излучение как от струи (струй), так и от долей, которые эти струи надувают. Эти эмиссионные вклады доминируют в светимости АЯГ на радиоволнах и, возможно, на некоторых или всех других длинах волн. Радиотихие объекты проще, поскольку струей и любым связанным с ней излучением можно пренебречь на всех длинах волн.

Терминология АЯГ часто сбивает с толку, поскольку различия между различными типами АЯГ иногда отражают исторические различия в том, как объекты были обнаружены или первоначально классифицированы, а не реальные физические различия.

Радиотихий АГН

[ редактировать ]
  • Области ядерных эмиссионных линий с низкой ионизацией (LINER). Как следует из названия, эти системы показывают только слабые области линий ядерного излучения и никаких других признаков излучения АЯГ. Это спорно [24] являются ли все такие системы настоящим АЯГ (приведенным в действие за счет аккреции на сверхмассивную черную дыру). Если да, то они представляют собой класс радиотихих АЯГ с наименьшей светимостью. Некоторые из них могут быть радиотихими аналогами радиогалактик с низким возбуждением (см. ниже).
  • Сейфертовские галактики . Сейферты были самым ранним выделенным классом АЯГ. Они демонстрируют излучение ядерного континуума оптического диапазона, узкие, а иногда и широкие эмиссионные линии, иногда сильное ядерное рентгеновское излучение, а иногда и слабую мелкомасштабную радиострую. Первоначально они были разделены на два типа, известные как сейфертовские 1 и сейфертовские 2: сейфертовские 1 демонстрируют сильные широкие эмиссионные линии, а сейфертовские 2 — нет, а сейфертовские 1 с большей вероятностью демонстрируют сильное низкоэнергетическое рентгеновское излучение. Существуют различные формы разработки этой схемы: например, сейфертовские 1 с относительно узкими широкими линиями иногда называют узколинейными сейфертовскими 1. Родительские галактики сейфертовских галактик обычно представляют собой спиральные или неправильные галактики.
  • Радиотихие квазары /QSO. По сути, это более яркие версии сейфертовских 1: различие условно и обычно выражается в терминах предельной оптической величины. Первоначально квазары были «квазизвездными» на оптических изображениях, поскольку их оптическая светимость была больше, чем у их родительской галактики. Они всегда демонстрируют сильное излучение оптического континуума, излучение рентгеновского континуума, а также широкие и узкие линии оптического излучения. Некоторые астрономы используют термин QSO (квазизвездный объект) для этого класса АЯГ, оставляя слово «квазар» для радиогромких объектов, в то время как другие говорят о радиотихих и радиогромких квазарах. Родительские галактики квазаров могут быть спиральными, неправильными или эллиптическими. Существует корреляция между светимостью квазара и массой родительской галактики: самые яркие квазары обитают в самых массивных галактиках (эллиптических).
  • «Квазар 2с». По аналогии с сейфертовскими 2s, это объекты с квазароподобной светимостью, но без сильного оптического излучения ядерного континуума или излучения широких линий. В исследованиях их мало, хотя было идентифицировано несколько возможных кандидатов в квазары 2.

Радио-громкий АГН

[ редактировать ]

Существует несколько подтипов радиогромких активных галактических ядер.

  • Радиогромкие квазары ведут себя точно так же, как радиотихие квазары с добавлением излучения джета. Таким образом, они демонстрируют сильное оптическое непрерывное излучение, широкие и узкие эмиссионные линии, а также сильное рентгеновское излучение вместе с ядерным и часто расширенным радиоизлучением.
  • Классы « Блазары » ( объекты BL Lac и квазары OVV ) отличаются быстропеременным, поляризованным оптическим, радио- и рентгеновским излучением. Объекты BL Lac не имеют ни широких, ни узких оптических линий излучения, поэтому их красное смещение можно определить только по особенностям спектров родительских галактик. Характеристики эмиссионной линии могут отсутствовать или просто быть заглушены дополнительным переменным компонентом. В последнем случае эмиссионные линии могут стать видимыми, когда переменная компонента находится на низком уровне. [25] Квазары OVV ведут себя больше как стандартные радиогромкие квазары с добавлением быстропеременного компонента. Считается, что в обоих классах источников переменное излучение возникает в релятивистской струе, ориентированной близко к лучу зрения. Релятивистские эффекты усиливают как светимость джета, так и амплитуду переменности.
  • Радиогалактики . Эти объекты демонстрируют ядерное и расширенное радиоизлучение. Остальные их свойства АЯГ неоднородны. В целом их можно разделить на классы с низким и высоким возбуждением. [26] [27] Объекты с низким возбуждением не имеют сильных узких или широких эмиссионных линий, а имеющиеся у них эмиссионные линии могут возбуждаться по другому механизму. [28] Их оптическое и рентгеновское ядерное излучение соответствует чисто струйному излучению. [29] [30] Они могут быть лучшими текущими кандидатами на роль АЯГ с радиационно неэффективной аккрецией. Напротив, объекты с высоким возбуждением (узколинейные радиогалактики) имеют спектры эмиссионных линий, аналогичные спектрам сейфертовских 2s. Небольшой класс радиогалактик с широкой линией, демонстрирующий относительно сильное излучение ядерного оптического континуума. [31] вероятно, включает в себя некоторые объекты, которые представляют собой просто радиогромкие квазары низкой светимости. Родительские галактики радиогалактик, независимо от типа их эмиссионных линий, по существу всегда имеют эллиптическую форму.
Особенности разных типов галактик
Тип галактики Активный

ядра

Эмиссионные линии Рентгеновские лучи Превышение Сильный

радио

Джеты Переменная Радио

громкий

Узкий Широкий УФ Дальний ИК
Нормальный (не-AGN) нет слабый нет слабый нет нет нет нет нет нет
ЛАЙНЕР неизвестный слабый слабый слабый нет нет нет нет нет нет
Seyfert I да да да некоторый некоторый да немного нет да нет
Seyfert II да да нет некоторый некоторый да немного нет да нет
Квазар да да да некоторый да да некоторый некоторый да некоторый
Блазар да нет некоторый да да нет да да да да
БЛ Лак да нет нет/обморок да да нет да да да да
ОВВ да нет сильнее, чем BL Lac да да нет да да да да
Радиогалактика да некоторый некоторый некоторый некоторый да да да да да

Унификация видов АЯГ

[ редактировать ]
Унифицированные модели АЯГ

Унифицированные модели предполагают, что разные наблюдательные классы АЯГ представляют собой один тип физического объекта, наблюдаемого в разных условиях. В настоящее время предпочтительными унифицированными моделями являются «унифицированные модели, основанные на ориентации», что означает, что они предполагают, что видимые различия между разными типами объектов возникают просто из-за их различной ориентации по отношению к наблюдателю. [32] [33] Однако они обсуждаются (см. ниже).

Радиотихое объединение

[ редактировать ]

При низких светимостях объединяемыми объектами являются сейфертовские галактики. Модели объединения предполагают, что в сейфертовских 1s наблюдатель имеет прямой обзор активного ядра. В сейфертовском 2s ядро ​​наблюдается через затемняющую структуру, которая предотвращает прямой обзор оптического континуума, области широких линий или (мягкого) рентгеновского излучения. Ключевая идея моделей аккреции, зависящих от ориентации, заключается в том, что два типа объектов могут быть одинаковыми, если соблюдаться только определенные углы к лучу зрения. Стандартное изображение представляет собой тор затеняющего материала, окружающий аккреционный диск. Он должен быть достаточно большим, чтобы закрыть область широкой линии, но не достаточно большим, чтобы закрыть область узкой линии, которая видна в обоих классах объектов. Через тор видны сейфертовские 2. За пределами тора находится материал, который может рассеивать часть ядерного излучения в пределах нашего луча зрения, позволяя нам видеть некоторый оптический и рентгеновский континуум и, в некоторых случаях, широкие эмиссионные линии, которые сильно поляризованы, показывая, что они имеют были разбросаны и доказывают, что некоторые сейферты 2 действительно содержат скрытые сейферты 1. Инфракрасные наблюдения ядер сейфертовских 2s также подтверждают эту картину.

При более высоких светимостях место сейфертовских 1 занимают квазары, но, как уже упоминалось, соответствующие «квазары 2» в настоящее время неуловимы. Если бы у них не было рассеивающего компонента сейфертовских 2, их было бы трудно обнаружить, кроме как по светящейся узкой линии и жесткому рентгеновскому излучению.

Радио-громкое объединение

[ редактировать ]

Исторически работа по объединению радиогромких квазаров концентрировалась на радиогромких квазарах высокой светимости. Их можно объединить с радиогалактиками с узкими линиями способом, прямо аналогичным объединению Сейферта 1/2 (но без особых усложнений в отношении компонента отражения: радиогалактики с узкими линиями не имеют ядерного оптического континуума или отраженного X -лучевой компонент, хотя иногда они демонстрируют поляризованное широколинейное излучение). Крупномасштабные радиоструктуры этих объектов убедительно доказывают, что унифицированные модели, основанные на ориентации, действительно верны. [34] [35] [36] Рентгеновские данные, если таковые имеются, подтверждают единую картину: радиогалактики демонстрируют признаки затемнения тором, а квазары — нет, хотя следует соблюдать осторожность, поскольку радиогромкие объекты также имеют мягкий непоглощаемый компонент, связанный с джетом, и высокую Разрешение необходимо для выделения теплового излучения из крупномасштабной среды горячих газов источников. [37] Под очень малыми углами к лучу зрения доминирует релятивистское излучение, и мы видим своеобразный блазар.

Однако в населении радиогалактик полностью преобладают объекты малой светимости и слабого возбуждения. На них нет сильных линий ядерного излучения — широких или узких — у них есть оптические континуумы, которые, по-видимому, полностью связаны с струями. [29] и их рентгеновское излучение также согласуется с тем, что оно исходит исключительно от струи, без какого-либо сильно поглощенного ядерного компонента в целом. [30] Эти объекты нельзя унифицировать с квазарами, хотя они и включают в себя некоторые объекты высокой светимости при взгляде на радиоизлучение, поскольку тор никогда не сможет скрыть область узких линий в необходимой степени, а инфракрасные исследования показывают, что у них нет скрытых ядерных компонент: [38] на самом деле нет никаких доказательств существования тора в этих объектах. Скорее всего, они образуют отдельный класс, для которого важна только эмиссия, связанная с струями. Под небольшими углами к лучу зрения они будут выглядеть как объекты BL Lac. [39]

Критика радиотихой унификации

[ редактировать ]

В недавней литературе по АЯГ, которая является предметом интенсивных дебатов, все больше наблюдений, по-видимому, противоречат некоторым ключевым предсказаниям Единой модели, например, что каждое сейфертовское ядро ​​2 имеет скрытое сейфертовское ядро ​​1 (скрытое широкое ядро). -линейная область).

Следовательно, нельзя знать, ионизирован ли газ во всех сейфертовских галактиках 2 из-за фотоионизации от одного незвездного источника континуума в центре или из-за ударной ионизации, например, из-за интенсивных ядерных звездных вспышек. Спектрополяриметрические исследования [40] показывают, что только 50% сейфертовских галактик 2 имеют скрытую область широкой линии и, таким образом, разделяют сейфертовские галактики 2 на две популяции. Эти два класса популяций, по-видимому, различаются по своей яркости, причем сейфертовские популяции 2 без скрытой области широкой линии обычно менее яркие. [41] Это предполагает, что отсутствие области широкой линии связано с низким коэффициентом Эддингтона, а не с затемнением.

Важную роль может играть фактор покрытия тора. Некоторые модели тора [42] [43] предсказать, как сейфертовские 1 и сейфертовские 2 могут получить разные коэффициенты покрытия из зависимости коэффициента покрытия тора от светимости и скорости аккреции, что подтверждается исследованиями рентгеновского излучения АЯГ. [44] Модели также предполагают зависимость области широкой линии от скорости аккреции и обеспечивают естественную эволюцию от более активных двигателей в сейферт-1 к более «мертвым» сейфертам-2. [45] и может объяснить наблюдаемый разрыв единой модели при низких светимостях [46] и эволюция региона широкой линии. [47]

Хотя исследования одиночного АЯГ показывают важные отклонения от ожиданий единой модели, результаты статистических тестов оказались противоречивыми. Наиболее важным недостатком статистических тестов путем прямого сравнения статистических выборок Сейферта 1 и Сейферта 2 является внесение систематических ошибок отбора из-за анизотропии критериев отбора. [48] [49]

Изучение соседних галактик, а не самого АЯГ [50] [51] [52] сначала предположил, что число соседей у ​​сейфертов 2 больше, чем у сейфертов 1, что противоречит Единой модели. Сегодня, преодолев прежние ограничения небольшого размера выборки и анизотропного отбора, исследования соседей от сотен до тысяч АЯГ [53] показали, что соседи сейфертовских галактик 2 по своей природе более пылевые и более склонны к звездообразованию, чем сейфертовские галактики 1, и существует связь между типом АЯГ, морфологией родительской галактики и историей столкновений. Более того, исследования угловой кластеризации [54] из двух типов АЯГ подтверждают, что они находятся в разных средах, и показывают, что они находятся в ореолах темной материи разных масс. Исследования среды AGN соответствуют моделям унификации, основанным на эволюции. [55] где сейфертовские 2 трансформируются в сейфертовские 1 во время слияния, что подтверждает более ранние модели активации сейфертовских ядер 1, вызванной слиянием.

Хотя разногласия по поводу обоснованности каждого отдельного исследования все еще преобладают, все они согласны с тем, что простейшие модели объединения AGN, основанные на угле обзора, являются неполными. Сейферт-1 и Сейферт-2, судя по всему, отличаются звездообразованием и мощностью двигателя АЯГ. [56]

Хотя утверждение о том, что скрытый сейферт-1 может выступать в качестве сейферта-2, по-прежнему может быть справедливым, не все сейферты-2 должны содержать скрытый сейферт-1. механизмы изменчивости некоторых АЯГ, которые различаются между двумя типами в очень коротких временных масштабах, а также связь типа АЯГ с мелко- и крупномасштабной средой остаются важными вопросами, которые необходимо включить в любую единую модель активных галактических ядер.

Исследование Swift/BAT AGN, опубликованное в июле 2022 г. [57] добавляет поддержку «модели объединения с радиационным регулированием», изложенной в 2017 году. [58] В этой модели относительная скорость аккреции (называемая «отношением Эддингтона») черной дыры оказывает существенное влияние на наблюдаемые особенности АЯГ. Черные дыры с более высокими коэффициентами Эддингтона, по-видимому, с большей вероятностью останутся незатененными, поскольку они очистили локально затмевающий материал за очень короткий промежуток времени.

Космологическое использование и эволюция

[ редактировать ]

В течение долгого времени активные галактики из-за своей высокой светимости удерживали все рекорды среди объектов с наибольшим красным смещением , известных как в оптическом, так и в радиоспектре. Они по-прежнему играют роль в исследованиях ранней Вселенной, но теперь признано, что АЯГ дает весьма искаженную картину «типичной» галактики с большим красным смещением.

Большинство светящихся классов АЯГ (радиогромкие и радиотихие), по-видимому, были гораздо более многочисленными в ранней Вселенной. Это говорит о том, что массивные черные дыры образовались раньше и что условия для образования светящегося АЯГ были более распространены в ранней Вселенной, например, гораздо более высокая доступность холодного газа вблизи центров галактик, чем в настоящее время. Это также означает, что многие объекты, которые когда-то были светящимися квазарами, теперь гораздо менее светятся или полностью неподвижны. Эволюция популяции АЯГ низкой светимости изучена гораздо хуже из-за сложности наблюдения этих объектов на высоких красных смещениях.

См. также

[ редактировать ]
  1. ^ Фатх, Э.А. (1909). «Спектры некоторых спиральных туманностей и шаровых звездных скоплений». Бюллетень Ликской обсерватории . 5 : 71. Бибкод : 1909LicOB...5...71F . дои : 10.5479/ADS/bib/1909LicOB.5.71F . hdl : 2027/uc1.c2914873 .
  2. ^ Кертис, HD (1918). «Описания 762 туманностей и скоплений, сфотографированных с помощью рефлектора Кроссли». Публикации Ликской обсерватории . 13 : 9. Бибкод : 1918PLicO..13....9C .
  3. ^ Слайфер, В. (1917). «Спектр и скорость туманности NGC 1068 (М 77)». Бюллетень обсерватории Лоуэлл . 3 : 59. Бибкод : 1917LowOB...3...59S .
  4. ^ Хьюмасон, М.Л. (1932). «Спектр излучения внегалактической туманности NGC 1275» . Публикации Тихоокеанского астрономического общества . 44 (260): 267. Бибкод : 1932PASP...44..267H . дои : 10.1086/124242 .
  5. ^ Мэйолл, Нью-Йорк (1934). «Спектр спиральной туманности NGC 4151» . Публикации Тихоокеанского астрономического общества . 46 (271): 134. Бибкод : 1934ПАСП...46..134М . дои : 10.1086/124429 . S2CID   119741164 .
  6. ^ Мэйолл, Нью-Йорк (1939). «Возникновение λ3727 [O II] в спектрах внегалактических туманностей» . Бюллетень Ликской обсерватории . 19 : 33. Бибкод : 1939ЛикОБ..19...33М . doi : 10.5479/ADS/bib/1939LicOB.19.33M .
  7. ^ Сейферт, КК (1943). «Ядерная эмиссия в спиральных туманностях». Астрофизический журнал . 97 : 28. Бибкод : 1943ApJ....97...28S . дои : 10.1086/144488 .
  8. ^ Болтон, Дж.Г.; Стэнли, Дж.Дж.; Сли, О.Б. (1949). «Положение трех дискретных источников галактического радиочастотного излучения» . Природа . 164 (4159): 101. Бибкод : 1949Natur.164..101B . дои : 10.1038/164101b0 . S2CID   4073162 .
  9. ^ Бааде, В.; Минковский, Р. (1954). «Идентификация радиоисточников в Кассиопее, Лебеде А и Корках А». Астрофизический журнал . 119 : 206. Бибкод : 1954ApJ...119..206B . дои : 10.1086/145812 .
  10. ^ Израильтянин, Гарик (1997). «Некролог: Виктор Амазаспович Амбарцумян, 1912 [то есть 1908]-1996» . Бюллетень Американского астрономического общества . 29 (4): 1466–1467 . Архивировано из оригинала 11 сентября 2015 г.
  11. ^ Маккатчеон, Роберт А. (1 ноября 2019 г.). «Амбарцумян, Виктор Амазаспович» . Полный словарь научной биографии . Энциклопедия.com . Архивировано из оригинала 3 декабря 2019 года.
  12. ^ Петросян, Арташес Р.; Арутюнян Гайк А.; Микаелян, Арег М. (июнь 1997 г.). «Виктор Амазасп Амбарцумян» . Физика сегодня . 50 (6): 106. дои : 10,1063/1,881754 . ( PDF )
  13. ^ Комберг, Б.В. (1992). «Квазары и активные ядра галактик». У Кардашева Н.С. (ред.). Астрофизика на пороге XXI века . Тейлор и Фрэнсис . п. 253 .
  14. ^ Шмидт, М. (1963). «3C 273: звездообразный объект с большим красным смещением» . Природа . 197 (4872): 1040. Бибкод : 1963Natur.197.1040S . дои : 10.1038/1971040a0 . S2CID   4186361 .
  15. ^ Гринштейн, Дж.Л.; Мэтьюз, Т. А. (1963). «Красное смещение необычного радиоисточника: 3C 48». Природа . 197 (4872): 1041. Бибкод : 1963Natur.197.1041G . дои : 10.1038/1971041a0 . S2CID   4193798 .
  16. ^ Шилдс, Джорджия (1999). «Краткая история активных галактических ядер». Публикации Тихоокеанского астрономического общества . 111 (760): 661. arXiv : astro-ph/9903401 . Бибкод : 1999PASP..111..661S . дои : 10.1086/316378 . S2CID   18953602 .
  17. ^ Линден-Белл, Дональд (1969). «Галактические ядра как рухнувшие старые квазары». Природа . 223 (5207): 690. Бибкод : 1969Natur.223..690L . дои : 10.1038/223690a0 . S2CID   4164497 .
  18. ^ «Лазеры и сверхмассивные черные дыры» . spacetelescope.org . Проверено 1 января 2018 г.
  19. ^ Линден-Белл, Д. (1969). «Галактические ядра как рухнувшие старые квазары». Природа . 223 (5207): 690–694. Бибкод : 1969Natur.223..690L . дои : 10.1038/223690a0 . S2CID   4164497 .
  20. ^ Маркони, А.; Л.К. Хант (2003). «Связь между массой черной дыры, массой балджа и светимостью в ближнем инфракрасном диапазоне». Астрофизический журнал . 589 (1): Л21–Л24. arXiv : astro-ph/0304274 . Бибкод : 2003ApJ...589L..21M . дои : 10.1086/375804 . S2CID   15911138 .
  21. ^ Нараян, Р.; И. Йи (1994). «Акреция с преобладанием адвекции: самоподобное решение». Астрофиз. Дж . 428 : Л13. arXiv : astro-ph/9403052 . Бибкод : 1994ApJ...428L..13N . дои : 10.1086/187381 . S2CID   8998323 .
  22. ^ Фабиан, AC; Эм Джей Рис (1995). «Аккреционная светимость массивной черной дыры в эллиптической галактике» . Ежемесячные уведомления Королевского астрономического общества . 277 (2): L55–L58. arXiv : astro-ph/9509096 . Бибкод : 1995MNRAS.277L..55F . дои : 10.1093/mnras/277.1.L55 . S2CID   18890265 .
  23. ^ Падовани, П.; Александр, Д.М.; Ассеф, Р.Дж.; Де Марко, Б.; Джомми, П.; Хикокс, Р.К.; Ричардс, GT; Смольчич, В.; Хациминаоглу, Э.; Майниери, В.; Сальвато, М. (ноябрь 2017 г.). «Активные ядра галактик: что в названии?» . Обзор астрономии и астрофизики . 25 (1). arXiv : 1707.07134 . дои : 10.1007/s00159-017-0102-9 . ISSN   0935-4956 .
  24. ^ Бельфиоре, Франческо (сентябрь 2016 г.). «SDSS IV MaNGA - диагностические диаграммы с пространственным разрешением: доказательство того, что многие галактики являются LIER» . Ежемесячные уведомления Королевского астрономического общества . 461 (3): 3111. arXiv : 1605.07189 . Бибкод : 2016MNRAS.461.3111B . дои : 10.1093/mnras/stw1234 . S2CID   3353122 .
  25. ^ Вермюлен, RC; Огл, премьер-министр; Тран, HD; Браун, IWA; Коэн, штат Миннесота; Ридхед, СКУД; Тейлор, Великобритания; Гудрич, Р.В. (1995). «Когда BL Lac не BL Lac?» . Письма астрофизического журнала . 452 (1): 5–8. Бибкод : 1995ApJ...452L...5V . дои : 10.1086/309716 .
  26. ^ ХИН, Р.Г.; МС ЛОНГЭЙР (1979). «Оптические спектры 3-х радиогалактик КЛ» . Ежемесячные уведомления Королевского астрономического общества . 188 : 111–130. Бибкод : 1979MNRAS.188..111H . дои : 10.1093/mnras/188.1.111 .
  27. ^ Лэнг, РА; Ч.Р. Дженкинс; СП Стена; С.В. Унгер (1994). «Спектрофотометрия полной выборки радиоисточников 3CR: значение для унифицированных моделей». Первый симпозиум Стромло: Физика активных галактик. Серия конференций ASP . 54 : 201. Бибкод : 1994ASPC...54..201L .
  28. ^ Баум, SA; Зирбель, Э.Л.; О'Ди, Кристофер П. (1995). «На пути к пониманию дихотомии Фанарова-Райли в морфологии и мощности радиоисточников». Астрофизический журнал . 451 : 88. Бибкод : 1995ApJ...451...88B . дои : 10.1086/176202 .
  29. ^ Перейти обратно: а б Чиаберге, М.; А. Капетти; А. Челотти (2002). «Понимание природы оптических ядер FRII: новый уровень диагностики радиогалактик». Астрон. Астрофизика . 394 (3): 791–800. arXiv : astro-ph/0207654 . Бибкод : 2002A&A...394..791C . дои : 10.1051/0004-6361:20021204 . S2CID   4308057 .
  30. ^ Перейти обратно: а б Хардкасл, MJ; Д. А. Эванс; Дж. Х. Кростон (2006). «Рентгеновские ядра радиоисточников среднего красного смещения» . Ежемесячные уведомления Королевского астрономического общества . 370 (4): 1893–1904. arXiv : astro-ph/0603090 . Бибкод : 2006MNRAS.370.1893H . дои : 10.1111/j.1365-2966.2006.10615.x . S2CID   14632376 .
  31. ^ Гранди, ЮАР; Д. Е. Остерброк (1978). «Оптические спектры радиогалактик». Астрофизический журнал . 220 (Часть 1): 783. Бибкод : 1978ApJ...220..783G . дои : 10.1086/155966 .
  32. ^ Антонуччи, Р. (1993). «Единые модели активных галактических ядер и квазаров». Ежегодный обзор астрономии и астрофизики . 31 (1): 473–521. Бибкод : 1993ARA&A..31..473A . дои : 10.1146/annurev.aa.31.090193.002353 .
  33. ^ Урри, П.; Паоло Падовани (1995). «Унифицированные схемы радиозвучания АГН». Публикации Тихоокеанского астрономического общества . 107 : 803–845. arXiv : astro-ph/9506063 . Бибкод : 1995PASP..107..803U . дои : 10.1086/133630 . S2CID   17198955 .
  34. ^ Лэнг, Р.А. (1988). «Бокальность джетов и деполяризация в мощных внегалактических радиоисточниках». Природа . 331 (6152): 149–151. Бибкод : 1988Natur.331..149L . дои : 10.1038/331149a0 . S2CID   45906162 .
  35. ^ Гаррингтон, Северная Каролина; Дж. П. Лихи; Р.Г. Конвей; РА ЛЭИНГ (1988). «Систематическая асимметрия поляризационных свойств двойных радиоисточников с одной струей». Природа . 331 (6152): 147–149. Бибкод : 1988Natur.331..147G . дои : 10.1038/331147a0 . S2CID   4347023 .
  36. ^ Бартель, П.Д. (1989). «Каждый ли квазар излучается?». Астрофизический журнал . 336 : 606–611. Бибкод : 1989ApJ...336..606B . дои : 10.1086/167038 .
  37. ^ Белсоле, Э.; Д.М. Уорролл; Эм Джей Хардкасл (2006). «Радиогалактики Фаранова-Райли типа II с большим красным смещением: рентгеновские свойства ядер» . Ежемесячные уведомления Королевского астрономического общества . 366 (1): 339–352. arXiv : astro-ph/0511606 . Бибкод : 2006MNRAS.366..339B . дои : 10.1111/j.1365-2966.2005.09882.x . S2CID   9509179 .
  38. ^ Огл, П.; Д. Уайсонг; Р. Антонуччи (2006). «Спитцер обнаруживает скрытые ядра квазаров в некоторых мощных радиогалактиках FR II». Астрофизический журнал . 647 (1): 161–171. arXiv : astro-ph/0601485 . Бибкод : 2006ApJ...647..161O . дои : 10.1086/505337 . S2CID   15122568 .
  39. ^ Браун, IWA (1983). «Можно ли превратить эллиптическую радиогалактику в объект BL Lac?» . Ежемесячные уведомления Королевского астрономического общества . 204 : 23–27П. Бибкод : 1983MNRAS.204P..23B . дои : 10.1093/mnras/204.1.23p .
  40. ^ Тран, HD (2001). «Скрытые сейфертовские галактики 2 с широкой линией в CFA и выборках размером 12 $\mu$M». Астрофизический журнал . 554 (1): Л19–Л23. arXiv : astro-ph/0105462 . Бибкод : 2001ApJ...554L..19T . дои : 10.1086/320926 . S2CID   2753150 .
  41. ^ Ву, Ю.З.; и др. (2001). «Разная природа в сейфертовских галактиках 2 со скрытыми областями широких линий и без них». Астрофизический журнал . 730 (2): 121–130. arXiv : 1101.4132 . Бибкод : 2011ApJ...730..121W . дои : 10.1088/0004-637X/730/2/121 . S2CID   119209693 .
  42. ^ Элицур, М.; Шлосман И. (2006). «Тор, скрывающий AGN: конец парадигмы пончика?». Астрофизический журнал . 648 (2): L101–L104. arXiv : astro-ph/0605686 . Бибкод : 2006ApJ...648L.101E . дои : 10.1086/508158 . S2CID   1972144 .
  43. ^ Никастро, Ф. (2000). «Области широких эмиссионных линий в активных ядрах галактик: связь с силой аккреции». Астрофизический журнал . 530 (2): Л101–Л104. arXiv : astro-ph/9912524 . Бибкод : 2000ApJ...530L..65N . дои : 10.1086/312491 . ПМИД   10655166 . S2CID   23313718 .
  44. ^ Риччи, К.; Уолтер Р.; Курвуазье TJ-L; Палтани С. (2010). «Отражение в сейфертовских галактиках и единая модель АЯГ». Астрономия и астрофизика . 532 : А102–21. arXiv : 1101.4132 . Бибкод : 2011A&A...532A.102R . дои : 10.1051/0004-6361/201016409 . S2CID   119309875 .
  45. ^ Ван, Дж. М.; Дю П.; Болдуин Дж.А.; Ge JQ.; Ферланд Г.Дж.; Ферланд, Гэри Дж. (2012). «Звездообразование в самогравитирующих дисках в активных ядрах галактик. II. Эпизодическое образование областей широких линий». Астрофизический журнал . 746 (2): 137–165. arXiv : 1202.0062 . Бибкод : 2012ApJ...746..137W . дои : 10.1088/0004-637X/746/2/137 . S2CID   5037595 .
  46. ^ Лаор, А. (2003). «О природе узколинейных активных галактических ядер малой светимости». Астрофизический журнал . 590 (1): 86–94. arXiv : astro-ph/0302541 . Бибкод : 2003ApJ...590...86L . дои : 10.1086/375008 . S2CID   118648122 .
  47. ^ Элицур, М.; Хо ЛК; Трамп-младший (2014). «Эволюция излучения широких линий активных ядер галактик» . Ежемесячные уведомления Королевского астрономического общества . 438 (4): 3340–3351. arXiv : 1312.4922 . Бибкод : 2014MNRAS.438.3340E . дои : 10.1093/mnras/stt2445 . S2CID   52024863 .
  48. ^ Элицур, М. (2012). «Об объединении активных ядер галактик». Письма астрофизического журнала . 747 (2): L33–L35. arXiv : 1202.1776 . Бибкод : 2012ApJ...747L..33E . дои : 10.1088/2041-8205/747/2/L33 . S2CID   5037009 .
  49. ^ Антонуччи, Р. (2012). «Панхроматический обзор тепловых и нетепловых активных галактических ядер». Астрономические и астрофизические труды . 27 (4): 557. arXiv : 1210.2716 . Бибкод : 2012A&AT...27..557A .
  50. ^ Лаурикайнен, Э.; Сало Х. (1995). «Окружение сейфертовских галактик. II. Статистический анализ». Астрономия и астрофизика . 293 : 683. Бибкод : 1995A&A...293..683L .
  51. ^ Дульцин-Ацян, Д. ; Кронголд Ю.; Фуэнтес-Гуриди И.; Марзиани П. (1999). «Тесное окружение сейфертовских галактик и его значение для моделей объединения». Письма астрофизического журнала . 513 (2): Л111–Л114. arXiv : astro-ph/9901227 . Бибкод : 1999ApJ...513L.111D . дои : 10.1086/311925 . S2CID   15568552 .
  52. ^ Кулуридис, Э.; Плионис М.; Чавушян В.; Дульцин-Ацян Д. ; Кронголд Ю.; Гудис К. (2006). «Локальное и крупномасштабное окружение сейфертовских галактик». Астрофизический журнал . 639 (1): 37–45. arXiv : astro-ph/0509843 . Бибкод : 2006ApJ...639...37K . дои : 10.1086/498421 . S2CID   118938514 .
  53. ^ Вильярроэль, Б.; Корн Эй Джей (2014). «Различные соседи вокруг активных галактических ядер Типа 1 и Типа 2». Физика природы . 10 (6): 417–420. arXiv : 1211.0528 . Бибкод : 2014NatPh..10..417V . дои : 10.1038/nphys2951 . S2CID   119199124 .
  54. ^ Доносо, Э.; Ян Л.; Штерн Д.; Ассеф Р.Дж. (2014). «Угловая кластеризация выбранных WISE AGN: разные ореолы для скрытых и незатененных AGN». Астрофизический журнал . 789 (1): 44. arXiv : 1309.2277 . Бибкод : 2014ApJ...789...44D . дои : 10.1088/0004-637X/789/1/44 . S2CID   118512526 .
  55. ^ Кронголд, Ю.; Дульцин-Ацян Д. ; Марциани Д. (2002). «Окружающая среда ярких галактик IRAS». Астрофизический журнал . 572 (1): 169–177. arXiv : astro-ph/0202412 . Бибкод : 2002ApJ...572..169K . дои : 10.1086/340299 . S2CID   17282005 .
  56. ^ Вильярроэль, Б.; Нихольм А.; Карлссон Т.; Комерон С.; Корн А.; Соллерман Дж.; Закриссон Э. (2017). «Светимость АЯГ и звездный возраст - два недостающих ингредиента для объединения АЯГ, как это видно на сверхновых iPTF» . Астрофизический журнал . 837 (2): 110. arXiv : 1701.08647 . Бибкод : 2017ApJ...837..110В . дои : 10.3847/1538-4357/aa5d5a . S2CID   67809219 .
  57. ^ Ананна, Тонима Тасним; Вайгель, Анна К.; Трахтенброт, Бенни; Косс, Майкл Дж.; Урри, К. Меган; Риччи, Клаудио; Хикокс, Райан С.; Трейстер, Эсекьель; Бауэр, Франц Э.; Уэда, Ёсихиро; Мушоцкий, Ричард; Риччи, Федерика; О, Кюсок; Мехия-Рестрепо, Хулиан Э.; Брок, Якоб Ден; Стерн, Дэниел; Пауэлл, Мередит К.; Чаглар, Тургай; Итикава, Кохей; Вонг, О. Айви; Харрисон, Фиона А.; Шавински, Кевин (01 июля 2022 г.). «BASS. XXX. Функции распределения отношений Эддингтона DR2, масс черных дыр и рентгеновской светимости» . Серия дополнений к астрофизическому журналу . 261 (1). Американское астрономическое общество: 9. arXiv : 2201.05603 . Бибкод : 2022ApJS..261....9A . дои : 10.3847/1538-4365/ac5b64 . ISSN   0067-0049 . S2CID   245986416 .
  58. ^ Риччи, Клаудио; Трахтенброт, Бенни; Косс, Майкл Дж.; Уэда, Ёсихиро; Шавински, Кевин; О, Кюсок; Ламперти, Изабелла; Мушоцкий, Ричард; Трейстер, Эсекьель; Хо, Луис К.; Вайгель, Анна; Бауэр, Франц Э.; Палтани, Стефан; Фабиан, Эндрю С.; Се, Янься; Герелс, Нил (2017). «Близкая среда аккрецирующих массивных черных дыр формируется радиационной обратной связью». Природа . 549 (7673). ООО «Спрингер Сайенс энд Бизнес Медиа»: 488–491. arXiv : 1709.09651 . Бибкод : 2017Natur.549..488R . дои : 10.1038/nature23906 . ISSN   0028-0836 . ПМИД   28959966 . S2CID   205260182 .
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: db3981d753610eb25a16f43734963635__1721209380
URL1:https://arc.ask3.ru/arc/aa/db/35/db3981d753610eb25a16f43734963635.html
Заголовок, (Title) документа по адресу, URL1:
Active galactic nucleus - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)