Jump to content

PSMC5

PSMC5
Доступные структуры
PDB Поиск ортолога: PDBE RCSB
Идентификаторы
Псевдонимы PSMC5 , S8, SUG-1, SUG1, TBP10, TRIP1, P45, P45/SUG, SUBUNIT 26S Proteasome, ATPASE 5, RPT6
Внешние идентификаторы Омим : 601681 ; MGI : 105047 ; Гомологен : 2098 ; GeneCards : PSMC5 ; OMA : PSMC5 - ортологи
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001199163
NM_002805

NM_008950

RefSeq (protein)

NP_001186092
NP_002796

NP_032976

Location (UCSC)Chr 17: 63.83 – 63.83 MbChr 11: 106.15 – 106.15 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

26S Протеаза регуляторная субъединица 8 , также известная как 26S Proteasome AAA-ATPase Subunit RPT6 , является ферментом , который у людей кодируется PSMC5 геном . [ 5 ] [ 6 ] [ 7 ] Этот белок является одной из 19 важных субъединиц полного собравшегося 19S -протеасомного комплекса [ 8 ] Шесть 26-х протеасомных субъединиц AAA-ATPase ( RPT1 , RPT2 , RPT3 , RPT4 , RPT5 и RPT6 (этот белок)) вместе с четырьмя неатпазными субъединицами ( RPN1 , RPN2 , RPN10 и RPN13 ) образуют базовый субэлекс из 19S. частица для протеасомного комплекса. [ 8 ]

The gene PSMC5 encodes one of the ATPase subunits, a member of the triple-A family of ATPases which have a chaperone-like activity. In addition to participation in proteasome functions, this subunit may participate in transcriptional regulation since it has been shown to interact with the thyroid hormone receptor and retinoid X receptor-alpha.[7] Человеческий ген PSMC5 имеет 13 экзонов и расположена в диапазоне хромосом 17Q23.3.

Protein

[edit]

The human protein 26S protease regulatory subunit 8 is 45.6kDa in size and composed of 406 amino acids. The calculated theoretical pI of this protein is 8.23.[9]

Complex assembly

[edit]

26S proteasome complex is usually consisted of a 20S core particle (CP, or 20S proteasome) and one or two 19S regulatory particles (RP, or 19S proteasome) on either one side or both side of the barrel-shaped 20S. The CP and RPs pertain distinct structural characteristics and biological functions. In brief, 20S sub complex presents three types proteolytic activities, including caspase-like, trypsin-like, and chymotrypsin-like activities. These proteolytic active sites located in the inner side of a chamber formed by 4 stacked rings of 20S subunits, preventing random protein-enzyme encounter and uncontrolled protein degradation. The 19S regulatory particles can recognize ubiquitin-labeled protein as degradation substrate, unfold the protein to linear, open the gate of 20S core particle, and guide the substrate into the proteolytic chamber. To meet such functional complexity, 19S regulatory particle contains at least 18 constitutive subunits. These subunits can be categorized into two classes based on the ATP dependence of subunits, ATP-dependent subunits and ATP-independent subunits. According to the protein interaction and topological characteristics of this multisubunit complex, the 19S regulatory particle is composed of a base and a lid subcomplex. The base consists of a ring of six AAA ATPases (Subunit Rpt1-6, systematic nomenclature) and four non-ATPase subunits (Rpn1, Rpn2, Rpn10, and Rpn13). Thus, 26S protease regulatory subunit 4 (Rpt2) is an essential component of forming the base subcomplex of 19S regulatory particle. For the assembly of 19S base sub complex, four sets of pivotal assembly chaperons (Hsm3/S5b, Nas2/P27, Nas6/P28, and Rpn14/PAAF1, nomenclature in yeast/mammals) were identified by four groups independently.[10][11][12][13][14][15] These 19S regulatory particle base-dedicated chaperons all binds to individual ATPase subunits through the C-terminal regions. For example, Hsm3/S5b binds to the subunit Rpt1 and Rpt2 (this protein), Nas2/p27 to Rpt5, Nas6/p28 to Rpt3, and Rpn14/PAAAF1 to Rpt6 (this protein), respectively. Subsequently, three intermediate assembly modules are formed as following, the Nas6/p28-Rpt3-Rpt6-Rpn14/PAAF1 module, the Nas2/p27-Rpt4-Rpt5 module, and the Hsm3/S5b-Rpt1-Rpt2-Rpn2 module. Eventually, these three modules assemble together to form the heterohexameric ring of 6 Atlases with Rpn1. The final addition of Rpn13 indicates the completion of 19S base sub complex assembly.[8]

Function

[edit]

As the degradation machinery that is responsible for ~70% of intracellular proteolysis,[16] proteasome complex (26S proteasome) plays a critical roles in maintaining the homeostasis of cellular proteome. Accordingly, misfolded proteins and damaged protein need to be continuously removed to recycle amino acids for new synthesis; in parallel, some key regulatory proteins fulfill their biological functions via selective degradation; furthermore, proteins are digested into peptides for MHC class I antigen presentation. To meet such complicated demands in biological process via spatial and temporal proteolysis, protein substrates have to be recognized, recruited, and eventually hydrolyzed in a well controlled fashion. Thus, 19S regulatory particle pertains a series of important capabilities to address these functional challenges. To recognize protein as designated substrate, 19S complex has subunits that are capable to recognize proteins with a special degradative tag, the ubiquitinylation. It also have subunits that can bind with nucleotides (e.g., ATPs) in order to facilitate the association between 19S and 20S particles, as well as to cause confirmation changes of alpha subunit C-terminals that form the substrate entrance of 20S complex.

The ATPases subunits assemble into a six-membered ring with a sequence of Rpt1–Rpt5–Rpt4–Rpt3–Rpt6–Rpt2, which interacts with the seven-membered alpha ring of 20S core particle and establishes an asymmetric interface between the 19S RP and the 20S CP.[17][18] Three C-terminal tails with HbYX motifs of distinct Rpt ATPases insert into pockets between two defined alpha subunits of the CP and regulate the gate opening of the central channels in the CP alpha ring.[19][20] Evidence showed that ATPase subunit Rpt5, along with other ubuiqintinated 19S proteasome subunits (Rpn13, Rpn10) and the deubiquitinating enzyme Uch37, can be ubiquitinated in situ by proteasome-associating ubiquitination enzymes. Ubiquitination of proteasome subunits can regulates proteasomal activity in response to the alteration of cellular ubiquitination levels.[21]

Interactions

[edit]

PSMC5 has been shown to interact with:

Children with PSMC5 Mutations

[edit]

As of 2021, only 18 reports of children with PSMC5 mutations have been discovered. <GeneMatcher> There is one foundation that is performing research with children who has PSMC5 mutations called PSMC5 Foundation, www.psmc5.org. The aim is to find therapies and learn more about how to resolve issues with mutations. The common effects have been developmental delays, ranging from motor delays to minimal expressive language.

References

[edit]
  1. ^ Jump up to: a b c GRCh38: Ensembl release 89: ENSG00000087191Ensembl, May 2017
  2. ^ Jump up to: a b c GRCm38: Ensembl release 89: ENSMUSG00000020708Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Tanahashi N, Suzuki M, Fujiwara T, Takahashi E, Shimbara N, Chung CH, Tanaka K (March 1998). "Chromosomal localization and immunological analysis of a family of human 26S proteasomal ATPases". Biochem Biophys Res Commun. 243 (1): 229–32. doi:10.1006/bbrc.1997.7892. PMID 9473509.
  6. ^ Hoyle J, Tan KH, Fisher EM (March 1997). "Localization of genes encoding two human one-domain members of the AAA family: PSMC5 (the thyroid hormone receptor-interacting protein, TRIP1) and PSMC3 (the Tat-binding protein, TBP1)". Hum Genet. 99 (2): 285–8. doi:10.1007/s004390050356. PMID 9048938. S2CID 29818936.
  7. ^ Jump up to: a b "Entrez Gene: PSMC5 proteasome (prosome, macropain) 26S subunit, ATPase, 5".
  8. ^ Jump up to: a b c Gu ZC, Enenkel C (Dec 2014). "Proteasome assembly". Cellular and Molecular Life Sciences. 71 (24): 4729–45. doi:10.1007/s00018-014-1699-8. PMC 11113775. PMID 25107634. S2CID 15661805.
  9. ^ "Uniprot: P62195 - PRS8_HUMAN".
  10. ^ Le Tallec B, Barrault MB, Guérois R, Carré T, Peyroche A (Feb 2009). "Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome". Molecular Cell. 33 (3): 389–99. doi:10.1016/j.molcel.2009.01.010. PMID 19217412.
  11. ^ Funakoshi M, Tomko RJ, Kobayashi H, Hochstrasser M (May 2009). "Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base". Cell. 137 (5): 887–99. doi:10.1016/j.cell.2009.04.061. PMC 2718848. PMID 19446322.
  12. ^ Park S, Roelofs J, Kim W, Robert J, Schmidt M, Gygi SP, Finley D (Jun 2009). "Hexameric assembly of the proteasomal ATPases is templated through their C termini". Nature. 459 (7248): 866–70. Bibcode:2009Natur.459..866P. doi:10.1038/nature08065. PMC 2722381. PMID 19412160.
  13. ^ Roelofs J, Park S, Haas W, Tian G, McAllister FE, Huo Y, Lee BH, Zhang F, Shi Y, Gygi SP, Finley D (Jun 2009). "Chaperone-mediated pathway of proteasome regulatory particle assembly". Nature. 459 (7248): 861–5. Bibcode:2009Natur.459..861R. doi:10.1038/nature08063. PMC 2727592. PMID 19412159.
  14. ^ Saeki Y, Toh-E A, Kudo T, Kawamura H, Tanaka K (May 2009). "Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle". Cell. 137 (5): 900–13. doi:10.1016/j.cell.2009.05.005. PMID 19446323. S2CID 14151131.
  15. ^ Kaneko T, Hamazaki J, Iemura S, Sasaki K, Furuyama K, Natsume T, Tanaka K, Murata S (May 2009). "Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones". Cell. 137 (5): 914–25. doi:10.1016/j.cell.2009.05.008. PMID 19490896. S2CID 18551885.
  16. ^ Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (Sep 1994). "Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules". Cell. 78 (5): 761–71. doi:10.1016/s0092-8674(94)90462-6. PMID 8087844. S2CID 22262916.
  17. ^ Tian G, Park S, Lee MJ, Huck B, McAllister F, Hill CP, Gygi SP, Finley D (Nov 2011). "An asymmetric interface between the regulatory and core particles of the proteasome". Nature Structural & Molecular Biology. 18 (11): 1259–67. doi:10.1038/nsmb.2147. PMC 3210322. PMID 22037170.
  18. ^ Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (Feb 2012). "Complete subunit architecture of the proteasome regulatory particle". Nature. 482 (7384): 186–91. Bibcode:2012Natur.482..186L. doi:10.1038/nature10774. PMC 3285539. PMID 22237024.
  19. ^ Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN (Nov 2008). "Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome". The Journal of Biological Chemistry. 283 (46): 31813–31822. doi:10.1074/jbc.M805935200. PMC 2581596. PMID 18796432.
  20. ^ Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (Sep 2007). "Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry". Molecular Cell. 27 (5): 731–744. doi:10.1016/j.molcel.2007.06.033. PMC 2083707. PMID 17803938.
  21. ^ Jacobson AD, MacFadden A, Wu Z, Peng J, Liu CW (Jun 2014). "Autoregulation of the 26S proteasome by in situ ubiquitination". Molecular Biology of the Cell. 25 (12): 1824–35. doi:10.1091/mbc.E13-10-0585. PMC 4055262. PMID 24743594.
  22. ^ Ishizuka T, Satoh T, Monden T, Shibusawa N, Hashida T, Yamada M, Mori M (August 2001). "Human immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR". Mol. Endocrinol. 15 (8): 1329–43. doi:10.1210/mend.15.8.0680. PMID 11463857.
  23. ^ Rual JF, Vengate K, Hao T, Hirth-Christ-Christ, Dricot A, Li N, Berriz GF, FD Gibbons, Dress M, Ayvi-gedehossou N, Click N, Simon C, Boxem M, Silthern S, Roenberg J, Голдберг Д.С., Чжан Л.В., Вонг С.Л., Франклин Г., Лим Дж.С., Книги Дж., Фротон С., Уэлш Е., Севик С., Бекс С., Сиропа Р.С., Ванденхаут Дж., Зогби Х. Х., Смоляр А, Босак С., Проявление Р., растяжение заместителя L, Cusick ME, Hid DE, FP Roth, Vidal M (Octoo 2005). «На пути к протеому белково-белок-белковой сетевой белок. Природа . 437 (7062): 1173–8. Bibcode : 2005 Natur . doi : 10.1038/nature04209 .  16189514PMID S2CID   4427026 .
  24. ^ Юинг Р.М., Чу П., Элизма Ф., Ли Х, Тейлор П., Клили С., МакБрум-Сираджевский Л., Робинсон М.Д., О'Коннор Л., Ли М., Тейлор Р., Дхарзее М., Хо Й., Хейлбут А., Мур Л., Чжан S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Ducewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007). «Крупномасштабное картирование взаимодействия белка белка человека с помощью масс-спектрометрии» . Мол Система Биол . 3 : 89. doi : 10.1038/msb4100134 . PMC   1847948 . PMID   17353931 .
  25. ^ Su K, Yang X, Roos MD, Paterson AJ, Kudlow JE (июнь 2000 г.). «Человеческий SUG1/P45 участвует в протеасом-зависимой деградации SP1» . Биохимия. Дж . 348. 348 Pt 2 (2): 281–9. doi : 10.1042/0264-6021: 3480281 . PMC   1221064 . PMID   10816420 .
  26. ^ Ван Ю.Т., Чуан Дж.Ю., Шен М.Р., Ян В.Б., Чанг В.К., Хунг Дж.Дж. (июль 2008 г.). «Сумоилирование белка специфичности 1 увеличивает его деградацию путем изменения локализации и увеличения протеолитического процесса специфичности белка 1». J. Mol. Биол . 380 (5): 869–85. doi : 10.1016/j.jmb.2008.05.043 . PMID   18572193 .
  27. ^ Weeda G, Rossignol M, Fraser RA, Winkler GS, Vermeulen W, Van 'T Veer LJ, Ma L, Hoeijmakers JH, Egly JM (июнь 1997 г.). «Субъединица XPB восстановления/фактора транскрипции TFIIH напрямую взаимодействует с SUG1, субъединицей протеасомы 26S и предполагаемого транскрипционного фактора» . Нуклеиновые кислоты Res . 25 (12): 2274–83. doi : 10.1093/nar/25.12.2274 . PMC   146752 . PMID   9173976 .

Дальнейшее чтение

[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 11e575bb1619319614d813de4e2336c3__1717404240
URL1:https://arc.ask3.ru/arc/aa/11/c3/11e575bb1619319614d813de4e2336c3.html
Заголовок, (Title) документа по адресу, URL1:
PSMC5 - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)