Jump to content

Группа отражения

(Перенаправлено из группы «Конечное отражение» )

В теории групп и геометрии группа отражений — это дискретная группа , которая порождается набором отражений конечномерного евклидова пространства . Группа симметрии правильного многогранника или замощения евклидова пространства конгруэнтными копиями правильного многогранника обязательно является группой отражения. Группы отражения также включают группы Вейля и кристаллографические группы Кокстера . Хотя ортогональная группа порождается отражениями (по теореме Картана-Дьедонне ), она является непрерывной группой (действительно, группой Ли ), а не дискретной группой, и обычно рассматривается отдельно.

Определение

[ редактировать ]

Пусть E — конечномерное евклидово пространство . Конечная группа отражений — это подгруппа общей линейной группы E , которая порождается набором ортогональных отражений через гиперплоскости, проходящие через начало координат. Группа аффинных отражений — это дискретная подгруппа аффинной группы E , которая порождается набором аффинных отражений E . (без требования, чтобы гиперплоскости отражения проходили через начало координат)

Соответствующие понятия могут быть определены над другими полями , что приводит к комплексным группам отражений и аналогам групп отражений над конечным полем .

В двух измерениях конечные группы отражений представляют собой группы диэдра , которые генерируются отражением в двух линиях, образующих угол и соответствуют диаграмме Кокстера И наоборот, циклические точечные группы в двух измерениях не порождены отражениями и не содержат их — они являются подгруппами индекса 2 группы диэдра.

Бесконечные группы отражений включают группы фризов. и и группы обоев , , , и . Если угол между двумя прямыми иррационально кратен числу пи, группа, порожденная отражениями в этих прямых, бесконечна и недискретна, следовательно, она не является группой отражений.

Конечные группы отражения — это точечные группы C nv , D nh и группы симметрии пяти Платоновых тел . Двойственные правильные многогранники (куб и октаэдр, а также додекаэдр и икосаэдр) порождают изоморфные группы симметрии. Классификация конечных групп отражений R 3 является экземпляром классификации ADE .

Связь с группами Кокстера

[ редактировать ]

Группа отражений W допускает представление особого вида, открытое и изученное Х. С. М. Коксетером . [1] Отражения в гранях фиксированной фундаментальной «камеры» являются генераторами r i W порядка 2. Все соотношения между ними формально следуют из соотношений

выражающее тот факт, что произведение отражений r i и r j в двух гиперплоскостях Hi встречающихся и H j, под углом это поворот на угол фиксируя подпространство H i H j коразмерности 2. Таким образом, если рассматривать ее как абстрактную группу, каждая группа отражений является группой Кокстера .

Конечные поля

[ редактировать ]

При работе с конечными полями «отражение» определяется как карта, фиксирующая гиперплоскость. Геометрически это равнозначно включению сдвигов в гиперплоскость. Группы отражений над конечными полями характеристики, отличной от 2, были классифицированы Залесским и Сережкиным (1981) .

Обобщения

[ редактировать ]

дискретные группы изометрий более общих римановых многообразий, Также рассматривались порожденных отражениями. Самый важный класс возникает из римановых симметрических пространств ранга 1: n-сфера S н , соответствующее конечным группам отражений, евклидово пространство R н , соответствующий группы аффинных отражений и гиперболическое пространство H н , где соответствующие группы называются гиперболическими группами отражений . В двух измерениях группы треугольников включают группы отражений всех трех видов.

См. также

[ редактировать ]

Примечания

[ редактировать ]

Библиография

[ редактировать ]
  • Коксетер, HSM (1934), «Дискретные группы, порожденные отражениями», Ann. математики. , 35 (3): 588–621, CiteSeerX   10.1.1.128.471 , doi : 10.2307/1968753 , JSTOR   1968753
  • Коксетер, HSM (1935), «Полное перечисление конечных групп вида ", J. London Math. Soc. , 10 : 21–25, doi : 10.1112/jlms/s1-10.37.21
  • Гудман, Роу (апрель 2004 г.), «Математика зеркал и калейдоскопов» (PDF) , American Mathematical Monthly , 111 (4): 281–298, CiteSeerX   10.1.1.127.6227 , doi : 10.2307/4145238 , JSTOR   4145238
  • Залесский, Александр Евгеньевич; Сережкин В.Н. (1981), "Конечные линейные группы, порожденные отражениями", Матем. СССР Изв. , 17 (3): 477–503, Бибкод : 1981ИзМат..17..477Z , doi : 10.1070/IM1981v017n03ABEH001369

Учебники

[ редактировать ]


[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 53a9714e211b29e5bfa109a19b0cc8eb__1710452940
URL1:https://arc.ask3.ru/arc/aa/53/eb/53a9714e211b29e5bfa109a19b0cc8eb.html
Заголовок, (Title) документа по адресу, URL1:
Reflection group - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)