Jump to content

Флексагон

(Перенаправлено с Тригексафлексагона )

Шестифлексагон показан с одной и той же гранью в двух конфигурациях.
Шестифлексагон показан с одной и той же гранью в двух конфигурациях.

В геометрии или складывать определенным образом , флексагоны представляют собой плоские модели, обычно состоящие из сложенных полосок бумаги, которые можно сгибать открывая лица, помимо двух, которые изначально находились сзади и спереди.

Флексагоны обычно имеют квадратную или прямоугольную форму ( тетрафлексагоны ) или шестиугольную форму ( гексафлексагоны ). К имени можно добавить префикс, указывающий количество граней, которые может отображать модель, включая две грани (заднюю и переднюю), которые видны до изгиба. Например, гексафлексагон, имеющий всего шесть граней, называется гексагексафлексагоном .

В теории гексафлексагона (то есть, касающейся флексагонов с шестью сторонами) флексагоны обычно определяются в терминах похлопываний . [1] [2]

Два флексагона эквивалентны, если один можно преобразовать в другой серией сжатий и вращений. Флексагонная эквивалентность — это отношение эквивалентности . [1]

Открытие и введение гексафлексагона.

[ редактировать ]

Открытие первого флексагона, тригексафлексагона, приписывают британскому математику Артуру Х. Стоуну , когда он был студентом Принстонского университета в США в 1939 году. Его новая американская статья не поместилась в его английскую папку, поэтому он отрезал концы бумаги и начал складывать их в разные фигуры. [3] Один из них образовал тригексафлексагон. Коллеги Стоуна Брайант Такерман , Ричард Фейнман и Джон Тьюки заинтересовались идеей и сформировали Принстонский комитет по флексагону. Такерман разработал топологический метод, названный траверсом Такермана, позволяющий выявить все грани флексагона. [4] Траверсы Такермана показаны в виде диаграммы, которая сопоставляет каждую грань флексагона с другой гранью. При этом он понял, что каждое лицо не всегда появляется в одном и том же состоянии.

Флексагоны были представлены широкой публике Мартином Гарднером в декабрьском номере журнала Scientific American за 1956 год в статье, настолько хорошо принятой, что она положила начало колонке Гарднера «Математические игры» , которая затем велась в этом журнале в течение следующих двадцати пяти лет. [3] [5] В 1974 году фокусник Дуг Хеннинг включил гексафлексагон, созданный своими руками, в оригинальную запись актерского состава своего бродвейского шоу «Волшебное шоу» .

Попытка коммерческого развития

[ редактировать ]

В 1955 году Рассел Роджерс и Леонард Д'Андреа из Хомстед-Парка, штат Пенсильвания, подали заявку на патент, а в 1959 году им был предоставлен патент США № 2 883 195 на гексагексафлексагон под названием «Сменные развлекательные устройства и тому подобное».

Их патент предполагал возможное применение устройства «в качестве игрушки, рекламного устройства или учебного геометрического устройства». [6] Несколько таких новинок было выпущено Herbick & Held Printing Company , типографской компанией в Питтсбурге , где работал Роджерс, но устройство, продаваемое как «Hexmo», не прижилось.

Разновидности

[ редактировать ]

Тетрафлексагоны

[ редактировать ]

Тритетрафлексагон

[ редактировать ]
Схема складывания тритетрафлексагона
Тритетрафлексагон можно сложить из полоски бумаги, как показано на рисунке.
Стороны тритетрафлексагона
У этой фигуры видны две грани, построенные из квадратов, отмеченных A и B. буквами Грань C s скрыта внутри флексагона.

Тритетрафлексагон – простейший тетрафлексагон (флексагон с квадратными сторонами). «Три» в названии означает, что у него три грани, две из которых видны в любой момент времени, если флексагон прижат плоско. Конструкция тритетрафлексагона аналогична механизму, используемому в традиционной «Лестница Иакова» детской игрушке , в «Магии Рубика» , а также в фокусе с волшебным кошельком или кошельке Химбера .

Тритетрафлексагон имеет два тупиковых конца, в которых невозможно сгибаться вперед. Чтобы добраться до другой грани, вам нужно либо прогнуться назад, либо перевернуть флексагон.

Траверс тритетрафлексагона

Гексатетрафлексагон

[ редактировать ]

Более сложный циклический гексатетрафлексагон не требует склеивания. Циклический гексатетрафлексагон не имеет «тупиков», но человек, который его делает, может продолжать складывать его, пока не достигнет исходного положения. Если стороны в процессе раскрашиваются, состояния можно увидеть более четко.

Траверс гексатетрафлексагона

В отличие от тритетрафлексагона, гексатетрафлексагон не имеет тупиков, и его не нужно сгибать назад.

Гексафлексагоны

[ редактировать ]

Гексафлексагоны бывают самых разных видов, отличающиеся количеством граней, которых можно добиться, согнув собранную фигуру. (Обратите внимание, что слово «гексафлексагон» [без префиксов] иногда может относиться к обычному гексагексафлексагону с шестью сторонами вместо других чисел.)

Тригексафлексагон

[ редактировать ]
На этом шаблоне тригексафлексагона изображены 9 треугольников 3 цветов, напечатанных на одной стороне и сложенных для окраски с обеих сторон. Два желтых треугольника на концах будут склеены вместе. Красная и синяя дуги в сложенном состоянии выглядят как полные круги на внутренней стороне одной или другой стороны.

Гексафлексагон с тремя гранями — самый простой в изготовлении и управлении гексафлексагон, он состоит из одной полоски бумаги, разделенной на девять равносторонних треугольников. (Некоторые выкройки состоят из десяти треугольников, два из которых склеиваются при окончательной сборке.)

Для сборки полоску складывают каждый третий треугольник, соединяя ее обратно после трех переворотов, как это принято в международном символе переработки . Получается лента Мёбиуса , единственный край которой образует узел-трилистник .

Гексагексафлексагон

[ редактировать ]

У этого гексафлексагона шесть граней. Он состоит из девятнадцати треугольников, сложенных из полоски бумаги.

Полоска бумаги, разделенная на треугольники, которые можно сложить в шестиугольник.
Серия фотографий, подробно описывающих конструкцию и «сгибание» гексафлексагона.
На рисунках 1-6 изображена конструкция гексафлексагона из картонных треугольников на подложке из полоски ткани. Он оформлен в шести цветах; оранжевый, синий и красный на рисунке 1 соответствуют цифрам 1, 2 и 3 на схеме выше. Противоположная сторона, цифра 2, украшена фиолетовым, серым и желтым цветами. Обратите внимание на разные узоры, используемые для цветов на двух сторонах. На рисунке 3 показана первая складка, а на рисунке 4 — результат первых девяти складок, образующих спираль. На рисунках 5-6 показано окончательное сворачивание спирали в шестиугольник; в 5 два красных лица скрыты складкой долины, а в 6 два красных лица на нижней стороне скрыты складкой горы. После рисунка 6 последний свободный треугольник сгибается и прикрепляется к другому концу исходной полоски так, чтобы одна сторона была полностью синей, а другая — оранжевой. На фотографиях 7 и 8 показан процесс выворачивания гексафлексагона, чтобы показать ранее скрытые красные треугольники. Путем дальнейших манипуляций можно обнажить все шесть цветов.

В сложенном виде грани 1, 2 и 3 найти легче, чем грани 4, 5 и 6.

Самый простой способ выявить все шесть граней — использовать траверс Такермана, названный в честь Брайанта Такермана, одного из первых, кто исследовал свойства гексафлексагонов. Траверса Такермана включает в себя многократное изгибание путем защемления одного угла и каждый раз сгибания точно одного и того же угла. Если угол отказывается открываться, перейдите в соседний угол и продолжайте сгибать. Эта процедура приведет вас к циклу с 12 лицами. Однако во время этой процедуры 1, 2 и 3 появляются в три раза чаще, чем 4, 5 и 6. Цикл протекает следующим образом:

1 → 3 → 6 → 1 → 3 → 2 → 4 → 3 → 2 → 1 → 5 → 2

И затем снова вернёмся к 1.

Каждый цвет/лицо также можно экспонировать более чем одним способом. На рисунке 6, например, каждый синий треугольник имеет в центре угол, украшенный клином, но можно, например, сделать так, чтобы украшенные буквами Y совпадали с центром. Таких возможных конфигураций треугольников разного цвета 18, и их можно увидеть, согнув гексагексафлексагон всеми возможными в теории способами, но только 15 можно согнуть обычным гексагексафлексагоном. Три дополнительные конфигурации невозможны из-за расположения плиток 4, 5 и 6 на заднем клапане. (Углы в 60 градусов в ромбах, образованных соседними 4, 5 или 6 плитками, появятся только по бокам и никогда не появятся в центре, поскольку для этого потребуется разрезать полосу, что топологически запрещено.)

Гексагексафлексагоны могут быть построены из сеток восемнадцати равносторонних треугольников разной формы. Один гексагексафлексагон, построенный из полоски бумаги неправильной формы, почти идентичен показанному выше, за исключением того, что в этой версии можно сгибать все 18 конфигураций.

Другие гексафлексагоны

[ редактировать ]

Хотя наиболее часто встречающиеся гексафлексагоны имеют три или шесть граней, существуют вариации с любым количеством граней. Прямые полосы образуют гексафлексагоны с числом граней, кратным трем. Другие числа получаются из непрямых полос, которые представляют собой просто прямые полосы со сложенными некоторыми стыками, исключающими некоторые грани. Многие полоски можно складывать по-разному, образуя разные гексафлексагоны с разными схемами сгиба.

Флексагоны высшего порядка

[ редактировать ]

Правый октафлексагон и правый додекафлексагон.

[ редактировать ]

В этих недавно обнаруженных флексагонах каждая квадратная или равносторонняя треугольная грань обычного флексагона дополнительно разделена на два прямоугольных треугольника, что обеспечивает дополнительные режимы изгиба. [7] Деление квадратных граней тетрафлексагонов на прямоугольные равнобедренные треугольники дает октафлексагоны. [8] а разделение треугольных граней гексафлексагонов на прямоугольные треугольники 30-60-90 дает додекафлексагоны. [9]

Пентафлексагон и правый декафлексагон.

[ редактировать ]

В плоском состоянии пентафлексагон очень похож на логотип Chrysler : правильный пятиугольник, разделенный от центра на пять равнобедренных треугольников с углами 72–54–54. Из-за своей пятикратной симметрии пентафлексагон не может быть сложен пополам. Однако сложная серия изгибов приводит к его трансформации: от отображения первой и второй сторон спереди и сзади к отображению ранее скрытых сторон третьей и четвертой. [10]

Дальнейшее разделение треугольников 72-54-54 пентафлексагона на прямоугольные треугольники 36-54-90 дает один вариант 10-стороннего декафлексагона. [11]

Генерализованный равнобедренный н-флексагон

[ редактировать ]

Пентафлексагон — один из бесконечной последовательности флексагонов, основанной на разделении правильного n -угольника на n равнобедренных треугольников. Другие флексагоны включают гептафлексагон, [12] равнобедренный октафлексагон, [13] эннеафлексагон, [14] и другие.

Непланарный пентафлексагон и непланарный гептафлексагон.

[ редактировать ]

Гарольд В. Макинтош также описывает «неплоские» флексагоны (т.е. те, которые нельзя согнуть, чтобы они лежали ровно); сложенные из пятиугольников , называемые пентафлексагонами . [15] и из семиугольников, называемых гептафлексагонами . [16] Их следует отличать от «обычных» пентафлексагонов и гептафлексагонов, описанных выше, которые состоят из равнобедренных треугольников и их можно заставить лежать ровно.

[ редактировать ]

Флексагоны также являются популярной книжной структурой, используемой создателями книг художников, такими как Джули Чен ( «Жизненный цикл ») и Эдвард Х. Хатчинс ( «Альбом» и «Voces de México» ). Инструкции по изготовлению тетра-тетра-флексагона и перекрестных флексагонов включены в книгу « Создание книг ручной работы: 100+ переплетов, структур и форм» Алисы Голден. [17]

Гексафлексагон высокого порядка использовался в качестве элемента сюжета в Пирса Энтони романе «0X» , в котором изгиб был аналогичен путешествию между альтернативными вселенными. [18]

Ви Харт , известный математик-любитель и педагог, привлекла внимание своим видео о гексафлексагонах .

См. также

[ редактировать ]
  1. ^ Перейти обратно: а б Окли, Колорадо; Виснер, Р.Дж. (март 1957 г.). «Флексагоны». Американский математический ежемесячник . 64 (3). Математическая ассоциация Америки: 143–154. дои : 10.2307/2310544 . JSTOR   2310544 .
  2. ^ Андерсон, Томас; Маклин, Т. Брюс; Паджоохеш, Хомейра; Смит, Чейзен (январь 2010 г.). «Комбинаторика всех правильных флексагонов» . Европейский журнал комбинаторики . 31 (1): 72–80. дои : 10.1016/j.ejc.2009.01.005 .
  3. ^ Перейти обратно: а б Гарднер, Мартин (декабрь 1956 г.). «Флексагоны». Научный американец . Том. 195, нет. 6. С. 162–168. дои : 10.1038/scientificamerican1256-162 . JSTOR   24941843 . OCLC   4657622161 .
  4. ^ Гарднер, Мартин (1988). Гексафлексагоны и другие математические развлечения: первая книга головоломок и игр Scientific American . Издательство Чикагского университета. ISBN  0-226-28254-6 .
  5. ^ Малкахи, Колм (21 октября 2014 г.). «10 лучших статей Мартина Гарднера в Scientific American» . Научный американец .
  6. ^ Роджерс, Рассел Э.; Андреа, Леонард Д.Л. (21 апреля 1959 г.). «Сменные развлекательные устройства и тому подобное» (PDF) . Freepatentsonline.com . Патент США 2883195. Архивировано (PDF) из оригинала 14 июня 2011 г. Проверено 13 января 2011 г.
  7. ^ Шварц, Энн (2005). «Открытие Flexagon: меняющий форму 12-гон» . Восьмая площадь.com . Проверено 26 октября 2012 г.
  8. ^ Шерман, Скотт (2007). «Октафлексагон» . Локи3.com . Проверено 26 октября 2012 г.
  9. ^ Шерман, Скотт (2007). «Додекафлексагон» . Локи3.com . Проверено 26 октября 2012 г.
  10. ^ Шерман, Скотт (2007). «Пентафлексагон» . Локи3.com . Проверено 26 октября 2012 г.
  11. ^ Шерман, Скотт (2007). «Декафлексагон» . Локи3.com . Проверено 26 октября 2012 г.
  12. ^ Шерман, Скотт (2007). «Гептафлексагон» . Локи3.com . Проверено 26 октября 2012 г.
  13. ^ Шерман, Скотт (2007). «Октафлексагон: Равнобедренный Октафлексагон» . Локи3.com . Проверено 26 октября 2012 г.
  14. ^ Шерман, Скотт (2007). «Эннеафлексагон: Равнобедренный Эннеафлексагон» . Локи3.com . Проверено 26 октября 2012 г.
  15. ^ Макинтош, Гарольд В. (24 августа 2000 г.). «Пятиугольные флексагоны» . Cinvestav.mx . Автономный университет Пуэблы Получено 26 , октября
  16. ^ Макинтош, Гарольд В. (11 марта 2000 г.). «Семиугольные флексагоны» . Cinvestav.mx . Автономный университет Пуэблы Получено 26 , октября
  17. ^ Голден, Алиса Дж. (2011). Изготовление книг ручной работы: более 100 переплетов, структур и форм . Поделки из жаворонков. стр. 130 , 132–133. ISBN  978-1-60059-587-5 .
  18. ^ Коллингс, Майкл Р. (1984). Пирс Энтони . Руководство для читателей Starmont № 20. Борго Пресс. стр. 47–48. ISBN  0-89370-058-4 .

Библиография

[ редактировать ]
  • Мартин Гарднер написал превосходное введение в гексафлексагоны в колонке «Математические игры» в журнале Scientific American за декабрь 1956 года . Он также появляется в:
  • Джонс, Мэдлин (1966). Таинственные флексагоны: введение в увлекательную новую концепцию складывания бумаги . Издательство Корона.
  • Митчелл, Дэвид (2000). Магия флексагонов — диковинки из бумаги, которые можно вырезать и сделать . Тарквиний. ISBN  1-899618-28-7 .
  • Пук, Лес (2006). Флексагоны наизнанку . Издательство Кембриджского университета. ISBN  0-521-81970-9 .
  • Пук, Лес (2009). Серьезное развлечение с флексагонами, сборник и руководство . Спрингер. ISBN  978-90-481-2502-9 .
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: fee6b980081b01e3da23f34d7fb5fcfb__1722491940
URL1:https://arc.ask3.ru/arc/aa/fe/fb/fee6b980081b01e3da23f34d7fb5fcfb.html
Заголовок, (Title) документа по адресу, URL1:
Flexagon - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)