Hyperelastic material model
В механике сплошных сред твердое тело Муни – Ривлина [ 1 ] [ 2 ] представляет собой модель гиперупругого материала , в которой функция плотности энергии деформации
W
{\displaystyle W\,}
представляет собой линейную комбинацию двух инвариантов левого тензора деформации Коши – Грина
B
{\displaystyle {\boldsymbol {B}}}
. Модель была предложена Мелвином Муни в 1940 году и выражена в терминах инвариантов Рональдом Ривлином в 1948 году.
Функция плотности энергии деформации несжимаемого материала Муни – Ривлина имеет вид [ 3 ] [ 4 ]
W
=
C
1
(
I
¯
1
−
3
)
+
C
2
(
I
¯
2
−
3
)
,
{\displaystyle W=C_{1}({\bar {I}}_{1}-3)+C_{2}({\bar {I}}_{2}-3),\,}
где
C
1
{\displaystyle C_{1}}
и
C
2
{\displaystyle C_{2}}
являются эмпирически определенными материальными константами, а
I
¯
1
{\displaystyle {\bar {I}}_{1}}
и
I
¯
2
{\displaystyle {\bar {I}}_{2}}
являются первым и инвариантами вторым
B
¯
=
(
det
B
)
−
1
/
3
B
{\displaystyle {\bar {\boldsymbol {B}}}=(\det {\boldsymbol {B}})^{-1/3}{\boldsymbol {B}}}
( унимодулярная составляющая
B
{\displaystyle {\boldsymbol {B}}}
[ 5 ] ):
I
¯
1
=
J
−
2
/
3
I
1
,
I
1
=
λ
1
2
+
λ
2
2
+
λ
3
2
,
I
¯
2
=
J
−
4
/
3
I
2
,
I
2
=
λ
1
2
λ
2
2
+
λ
2
2
λ
3
2
+
λ
3
2
λ
1
2
{\displaystyle {\begin{aligned}{\bar {I}}_{1}&=J^{-2/3}~I_{1},\quad I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2},\\{\bar {I}}_{2}&=J^{-4/3}~I_{2},\quad I_{2}=\lambda _{1}^{2}\lambda _{2}^{2}+\lambda _{2}^{2}\lambda _{3}^{2}+\lambda _{3}^{2}\lambda _{1}^{2}\end{aligned}}}
где
F
{\displaystyle {\boldsymbol {F}}}
– градиент деформации и
J
=
det
(
F
)
=
λ
1
λ
2
λ
3
{\displaystyle J=\det({\boldsymbol {F}})=\lambda _{1}\lambda _{2}\lambda _{3}}
. Для несжимаемого материала
J
=
1
{\displaystyle J=1}
.
Модель Муни-Ривлина является частным случаем обобщенной модели Ривлина (также называемой полиномиальной гиперупругой моделью). [ 6 ] ), который имеет вид
W
=
∑
p
,
q
=
0
N
C
p
q
(
I
¯
1
−
3
)
p
(
I
¯
2
−
3
)
q
+
∑
m
=
1
M
1
D
m
(
J
−
1
)
2
m
{\displaystyle W=\sum _{p,q=0}^{N}C_{pq}({\bar {I}}_{1}-3)^{p}~({\bar {I}}_{2}-3)^{q}+\sum _{m=1}^{M}{\frac {1}{D_{m}}}~(J-1)^{2m}}
с
C
00
=
0
{\displaystyle C_{00}=0}
где
C
p
q
{\displaystyle C_{pq}}
являются материальными константами, связанными с искажающим откликом и
D
m
{\displaystyle D_{m}}
— материальные константы, связанные с объемным откликом. Для сжимаемого материала Муни–Ривлина
N
=
1
,
C
01
=
C
2
,
C
11
=
0
,
C
10
=
C
1
,
M
=
1
{\displaystyle N=1,C_{01}=C_{2},C_{11}=0,C_{10}=C_{1},M=1}
и у нас есть
W
=
C
01
(
I
¯
2
−
3
)
+
C
10
(
I
¯
1
−
3
)
+
1
D
1
(
J
−
1
)
2
{\displaystyle W=C_{01}~({\bar {I}}_{2}-3)+C_{10}~({\bar {I}}_{1}-3)+{\frac {1}{D_{1}}}~(J-1)^{2}}
Если
C
01
=
0
{\displaystyle C_{01}=0}
мы получаем неогуковское тело , частный случай тела Муни–Ривлина .
Для обеспечения устойчивости к линейной упругости в пределе малых деформаций необходимо, чтобы
κ
=
2
/
D
1
;
μ
=
2
(
C
01
+
C
10
)
{\displaystyle \kappa =2/D_{1}~;~~\mu =2~(C_{01}+C_{10})}
где
κ
{\displaystyle \kappa }
объемный модуль и
μ
{\displaystyle \mu }
– модуль сдвига .
Напряжение Коши в сжимаемом гиперупругом материале с базовой конфигурацией без напряжений определяется выражением
σ
=
2
J
[
1
J
2
/
3
(
∂
W
∂
I
¯
1
+
I
¯
1
∂
W
∂
I
¯
2
)
B
−
1
J
4
/
3
∂
W
∂
I
¯
2
B
⋅
B
]
+
[
∂
W
∂
J
−
2
3
J
(
I
¯
1
∂
W
∂
I
¯
1
+
2
I
¯
2
∂
W
∂
I
¯
2
)
]
I
{\displaystyle {\boldsymbol {\sigma }}={\cfrac {2}{J}}\left[{\cfrac {1}{J^{2/3}}}\left({\cfrac {\partial {W}}{\partial {\bar {I}}_{1}}}+{\bar {I}}_{1}~{\cfrac {\partial {W}}{\partial {\bar {I}}_{2}}}\right){\boldsymbol {B}}-{\cfrac {1}{J^{4/3}}}~{\cfrac {\partial {W}}{\partial {\bar {I}}_{2}}}~{\boldsymbol {B}}\cdot {\boldsymbol {B}}\right]+\left[{\cfrac {\partial {W}}{\partial J}}-{\cfrac {2}{3J}}\left({\bar {I}}_{1}~{\cfrac {\partial {W}}{\partial {\bar {I}}_{1}}}+2~{\bar {I}}_{2}~{\cfrac {\partial {W}}{\partial {\bar {I}}_{2}}}\right)\right]~{\boldsymbol {I}}}
Для сжимаемого материала Муни-Ривлина
∂
W
∂
I
¯
1
=
C
1
;
∂
W
∂
I
¯
2
=
C
2
;
∂
W
∂
J
=
2
D
1
(
J
−
1
)
{\displaystyle {\cfrac {\partial {W}}{\partial {\bar {I}}_{1}}}=C_{1}~;~~{\cfrac {\partial {W}}{\partial {\bar {I}}_{2}}}=C_{2}~;~~{\cfrac {\partial {W}}{\partial J}}={\frac {2}{D_{1}}}(J-1)}
Следовательно, напряжение Коши в сжимаемом материале Муни – Ривлина определяется выражением
σ
=
2
J
[
1
J
2
/
3
(
C
1
+
I
¯
1
C
2
)
B
−
1
J
4
/
3
C
2
B
⋅
B
]
+
[
2
D
1
(
J
−
1
)
−
2
3
J
(
C
1
I
¯
1
+
2
C
2
I
¯
2
)
]
I
{\displaystyle {\boldsymbol {\sigma }}={\cfrac {2}{J}}\left[{\cfrac {1}{J^{2/3}}}\left(C_{1}+{\bar {I}}_{1}~C_{2}\right){\boldsymbol {B}}-{\cfrac {1}{J^{4/3}}}~C_{2}~{\boldsymbol {B}}\cdot {\boldsymbol {B}}\right]+\left[{\frac {2}{D_{1}}}(J-1)-{\cfrac {2}{3J}}\left(C_{1}{\bar {I}}_{1}+2C_{2}{\bar {I}}_{2}~\right)\right]{\boldsymbol {I}}}
После некоторой алгебры можно показать, что давление определяется выражением
p
:=
−
1
3
tr
(
σ
)
=
−
∂
W
∂
J
=
−
2
D
1
(
J
−
1
)
.
{\displaystyle p:=-{\tfrac {1}{3}}\,{\text{tr}}({\boldsymbol {\sigma }})=-{\frac {\partial W}{\partial J}}=-{\frac {2}{D_{1}}}(J-1)\,.}
Тогда напряжение можно выразить в виде
σ
=
−
p
I
+
1
J
[
2
J
2
/
3
(
C
1
+
I
¯
1
C
2
)
B
−
2
J
4
/
3
C
2
B
⋅
B
−
2
3
(
C
1
I
¯
1
+
2
C
2
I
¯
2
)
I
]
.
{\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {I}}+{\cfrac {1}{J}}\left[{\cfrac {2}{J^{2/3}}}\left(C_{1}+{\bar {I}}_{1}~C_{2}\right){\boldsymbol {B}}-{\cfrac {2}{J^{4/3}}}~C_{2}~{\boldsymbol {B}}\cdot {\boldsymbol {B}}-{\cfrac {2}{3}}\left(C_{1}\,{\bar {I}}_{1}+2C_{2}\,{\bar {I}}_{2}\right){\boldsymbol {I}}\right]\,.}
Приведенное выше уравнение часто записывается с использованием унимодулярного тензора
B
¯
=
J
−
2
/
3
B
{\displaystyle {\bar {\boldsymbol {B}}}=J^{-2/3}\,{\boldsymbol {B}}}
:
σ
=
−
p
I
+
1
J
[
2
(
C
1
+
I
¯
1
C
2
)
B
¯
−
2
C
2
B
¯
⋅
B
¯
−
2
3
(
C
1
I
¯
1
+
2
C
2
I
¯
2
)
I
]
.
{\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {I}}+{\cfrac {1}{J}}\left[2\left(C_{1}+{\bar {I}}_{1}~C_{2}\right){\bar {\boldsymbol {B}}}-2~C_{2}~{\bar {\boldsymbol {B}}}\cdot {\bar {\boldsymbol {B}}}-{\cfrac {2}{3}}\left(C_{1}\,{\bar {I}}_{1}+2C_{2}\,{\bar {I}}_{2}\right){\boldsymbol {I}}\right]\,.}
Для несжимаемого материала Муни–Ривлина с
J
=
1
{\displaystyle J=1}
там держится
p
=
0
{\displaystyle p=0}
и
B
¯
=
B
{\displaystyle {\bar {\boldsymbol {B}}}={\boldsymbol {B}}}
. Таким образом
σ
=
2
(
C
1
+
I
1
C
2
)
B
−
2
C
2
B
⋅
B
−
2
3
(
C
1
I
1
+
2
C
2
I
2
)
I
.
{\displaystyle {\boldsymbol {\sigma }}=2\left(C_{1}+I_{1}~C_{2}\right){\boldsymbol {B}}-2C_{2}~{\boldsymbol {B}}\cdot {\boldsymbol {B}}-{\cfrac {2}{3}}\left(C_{1}\,I_{1}+2C_{2}\,I_{2}\right){\boldsymbol {I}}\,.}
С
det
J
=
1
{\displaystyle \det J=1}
из теоремы Кэли – Гамильтона следует
B
−
1
=
B
⋅
B
−
I
1
B
+
I
2
I
.
{\displaystyle {\boldsymbol {B}}^{-1}={\boldsymbol {B}}\cdot {\boldsymbol {B}}-I_{1}~{\boldsymbol {B}}+I_{2}~{\boldsymbol {I}}.}
Следовательно, напряжение Коши можно выразить как
σ
=
−
p
∗
I
+
2
C
1
B
−
2
C
2
B
−
1
{\displaystyle {\boldsymbol {\sigma }}=-p^{*}~{\boldsymbol {I}}+2C_{1}~{\boldsymbol {B}}-2C_{2}~{\boldsymbol {B}}^{-1}}
где
p
∗
:=
2
3
(
C
1
I
1
−
C
2
I
2
)
.
{\displaystyle p^{*}:={\tfrac {2}{3}}(C_{1}~I_{1}-C_{2}~I_{2}).\,}
Напряжение Коши с точки зрения главных растяжений [ редактировать ]
С точки зрения главных растяжений разность напряжений Коши для несжимаемого гиперупругого материала определяется выражением
σ
11
−
σ
33
=
λ
1
∂
W
∂
λ
1
−
λ
3
∂
W
∂
λ
3
;
σ
22
−
σ
33
=
λ
2
∂
W
∂
λ
2
−
λ
3
∂
W
∂
λ
3
{\displaystyle \sigma _{11}-\sigma _{33}=\lambda _{1}~{\cfrac {\partial {W}}{\partial \lambda _{1}}}-\lambda _{3}~{\cfrac {\partial {W}}{\partial \lambda _{3}}}~;~~\sigma _{22}-\sigma _{33}=\lambda _{2}~{\cfrac {\partial {W}}{\partial \lambda _{2}}}-\lambda _{3}~{\cfrac {\partial {W}}{\partial \lambda _{3}}}}
Для несжимаемого материала Муни-Ривлина
W
=
C
1
(
λ
1
2
+
λ
2
2
+
λ
3
2
−
3
)
+
C
2
(
λ
1
2
λ
2
2
+
λ
2
2
λ
3
2
+
λ
3
2
λ
1
2
−
3
)
;
λ
1
λ
2
λ
3
=
1
{\displaystyle W=C_{1}(\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}-3)+C_{2}(\lambda _{1}^{2}\lambda _{2}^{2}+\lambda _{2}^{2}\lambda _{3}^{2}+\lambda _{3}^{2}\lambda _{1}^{2}-3)~;~~\lambda _{1}\lambda _{2}\lambda _{3}=1}
Поэтому,
λ
1
∂
W
∂
λ
1
=
2
C
1
λ
1
2
+
2
C
2
λ
1
2
(
λ
2
2
+
λ
3
2
)
;
λ
2
∂
W
∂
λ
2
=
2
C
1
λ
2
2
+
2
C
2
λ
2
2
(
λ
1
2
+
λ
3
2
)
;
λ
3
∂
W
∂
λ
3
=
2
C
1
λ
3
2
+
2
C
2
λ
3
2
(
λ
1
2
+
λ
2
2
)
{\displaystyle \lambda _{1}{\cfrac {\partial {W}}{\partial \lambda _{1}}}=2C_{1}\lambda _{1}^{2}+2C_{2}\lambda _{1}^{2}(\lambda _{2}^{2}+\lambda _{3}^{2})~;~~\lambda _{2}{\cfrac {\partial {W}}{\partial \lambda _{2}}}=2C_{1}\lambda _{2}^{2}+2C_{2}\lambda _{2}^{2}(\lambda _{1}^{2}+\lambda _{3}^{2})~;~~\lambda _{3}{\cfrac {\partial {W}}{\partial \lambda _{3}}}=2C_{1}\lambda _{3}^{2}+2C_{2}\lambda _{3}^{2}(\lambda _{1}^{2}+\lambda _{2}^{2})}
С
λ
1
λ
2
λ
3
=
1
{\displaystyle \lambda _{1}\lambda _{2}\lambda _{3}=1}
. мы можем написать
λ
1
∂
W
∂
λ
1
=
2
C
1
λ
1
2
+
2
C
2
(
1
λ
3
2
+
1
λ
2
2
)
;
λ
2
∂
W
∂
λ
2
=
2
C
1
λ
2
2
+
2
C
2
(
1
λ
3
2
+
1
λ
1
2
)
λ
3
∂
W
∂
λ
3
=
2
C
1
λ
3
2
+
2
C
2
(
1
λ
2
2
+
1
λ
1
2
)
{\displaystyle {\begin{aligned}\lambda _{1}{\cfrac {\partial {W}}{\partial \lambda _{1}}}&=2C_{1}\lambda _{1}^{2}+2C_{2}\left({\cfrac {1}{\lambda _{3}^{2}}}+{\cfrac {1}{\lambda _{2}^{2}}}\right)~;~~\lambda _{2}{\cfrac {\partial {W}}{\partial \lambda _{2}}}=2C_{1}\lambda _{2}^{2}+2C_{2}\left({\cfrac {1}{\lambda _{3}^{2}}}+{\cfrac {1}{\lambda _{1}^{2}}}\right)\\\lambda _{3}{\cfrac {\partial {W}}{\partial \lambda _{3}}}&=2C_{1}\lambda _{3}^{2}+2C_{2}\left({\cfrac {1}{\lambda _{2}^{2}}}+{\cfrac {1}{\lambda _{1}^{2}}}\right)\end{aligned}}}
Тогда выражения для разности напряжений Коши примут вид
σ
11
−
σ
33
=
2
C
1
(
λ
1
2
−
λ
3
2
)
−
2
C
2
(
1
λ
1
2
−
1
λ
3
2
)
;
σ
22
−
σ
33
=
2
C
1
(
λ
2
2
−
λ
3
2
)
−
2
C
2
(
1
λ
2
2
−
1
λ
3
2
)
{\displaystyle \sigma _{11}-\sigma _{33}=2C_{1}(\lambda _{1}^{2}-\lambda _{3}^{2})-2C_{2}\left({\cfrac {1}{\lambda _{1}^{2}}}-{\cfrac {1}{\lambda _{3}^{2}}}\right)~;~~\sigma _{22}-\sigma _{33}=2C_{1}(\lambda _{2}^{2}-\lambda _{3}^{2})-2C_{2}\left({\cfrac {1}{\lambda _{2}^{2}}}-{\cfrac {1}{\lambda _{3}^{2}}}\right)}
Для случая несжимаемого материала Муни-Ривлина при одноосном растяжении
λ
1
=
λ
{\displaystyle \lambda _{1}=\lambda \,}
и
λ
2
=
λ
3
=
1
/
λ
{\displaystyle \lambda _{2}=\lambda _{3}=1/{\sqrt {\lambda }}}
. Тогда истинные различия напряжений (напряжений Коши) можно рассчитать как:
σ
11
−
σ
33
=
2
C
1
(
λ
2
−
1
λ
)
−
2
C
2
(
1
λ
2
−
λ
)
σ
22
−
σ
33
=
0
{\displaystyle {\begin{aligned}\sigma _{11}-\sigma _{33}&=2C_{1}\left(\lambda ^{2}-{\cfrac {1}{\lambda }}\right)-2C_{2}\left({\cfrac {1}{\lambda ^{2}}}-\lambda \right)\\\sigma _{22}-\sigma _{33}&=0\end{aligned}}}
Сравнение экспериментальных результатов (точки) и прогнозов для закона Гука (1, синяя линия), твердого тела нео-Гука (2, красная линия) и твердотельных моделей Муни – Ривлина (3, зеленая линия)
В случае простого напряжения
σ
22
=
σ
33
=
0
{\displaystyle \sigma _{22}=\sigma _{33}=0}
. Тогда мы можем написать
σ
11
=
(
2
C
1
+
2
C
2
λ
)
(
λ
2
−
1
λ
)
{\displaystyle \sigma _{11}=\left(2C_{1}+{\cfrac {2C_{2}}{\lambda }}\right)\left(\lambda ^{2}-{\cfrac {1}{\lambda }}\right)}
В альтернативных обозначениях, где напряжение Коши записывается как
T
{\displaystyle {\boldsymbol {T}}}
и растяжение как
α
{\displaystyle \alpha }
, мы можем написать
T
11
=
(
2
C
1
+
2
C
2
α
)
(
α
2
−
α
−
1
)
{\displaystyle T_{11}=\left(2C_{1}+{\frac {2C_{2}}{\alpha }}\right)\left(\alpha ^{2}-\alpha ^{-1}\right)}
а инженерное напряжение (сила на единицу базовой площади) для несжимаемого материала Муни-Ривлина при простом растяжении можно рассчитать с помощью формулы
T
11
e
n
g
=
T
11
α
2
α
3
=
T
11
α
{\displaystyle T_{11}^{\mathrm {eng} }=T_{11}\alpha _{2}\alpha _{3}={\cfrac {T_{11}}{\alpha }}}
. Следовательно
T
11
e
n
g
=
(
2
C
1
+
2
C
2
α
)
(
α
−
α
−
2
)
{\displaystyle T_{11}^{\mathrm {eng} }=\left(2C_{1}+{\frac {2C_{2}}{\alpha }}\right)\left(\alpha -\alpha ^{-2}\right)}
Если мы определим
T
11
∗
:=
T
11
e
n
g
α
−
α
−
2
;
β
:=
1
α
{\displaystyle T_{11}^{*}:={\cfrac {T_{11}^{\mathrm {eng} }}{\alpha -\alpha ^{-2}}}~;~~\beta :={\cfrac {1}{\alpha }}}
затем
T
11
∗
=
2
C
1
+
2
C
2
β
.
{\displaystyle T_{11}^{*}=2C_{1}+2C_{2}\beta ~.}
Наклон
T
11
∗
{\displaystyle T_{11}^{*}}
против
β
{\displaystyle \beta }
линия дает значение
C
2
{\displaystyle C_{2}}
в то время как перехват с
T
11
∗
{\displaystyle T_{11}^{*}}
ось дает значение
C
1
{\displaystyle C_{1}}
. Твердая модель Муни-Ривлина обычно лучше соответствует экспериментальным данным, чем твердое тело Нео-Гука , но требует дополнительной эмпирической константы.
В случае равноосного растяжения основные растяжения равны
λ
1
=
λ
2
=
λ
{\displaystyle \lambda _{1}=\lambda _{2}=\lambda }
. Если к тому же материал несжимаем, то
λ
3
=
1
/
λ
2
{\displaystyle \lambda _{3}=1/\lambda ^{2}}
. Таким образом, различия напряжений Коши можно выразить как
σ
11
−
σ
33
=
σ
22
−
σ
33
=
2
C
1
(
λ
2
−
1
λ
4
)
−
2
C
2
(
1
λ
2
−
λ
4
)
{\displaystyle \sigma _{11}-\sigma _{33}=\sigma _{22}-\sigma _{33}=2C_{1}\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{4}}}\right)-2C_{2}\left({\cfrac {1}{\lambda ^{2}}}-\lambda ^{4}\right)}
Уравнения равноосного растяжения эквивалентны уравнениям одноосного сжатия.
Чистая сдвиговая деформация может быть достигнута путем применения растяжений формы [ 7 ]
λ
1
=
λ
;
λ
2
=
1
λ
;
λ
3
=
1
{\displaystyle \lambda _{1}=\lambda ~;~~\lambda _{2}={\cfrac {1}{\lambda }}~;~~\lambda _{3}=1}
Таким образом, разность напряжений Коши для чистого сдвига может быть выражена как
σ
11
−
σ
33
=
2
C
1
(
λ
2
−
1
)
−
2
C
2
(
1
λ
2
−
1
)
;
σ
22
−
σ
33
=
2
C
1
(
1
λ
2
−
1
)
−
2
C
2
(
λ
2
−
1
)
{\displaystyle \sigma _{11}-\sigma _{33}=2C_{1}(\lambda ^{2}-1)-2C_{2}\left({\cfrac {1}{\lambda ^{2}}}-1\right)~;~~\sigma _{22}-\sigma _{33}=2C_{1}\left({\cfrac {1}{\lambda ^{2}}}-1\right)-2C_{2}(\lambda ^{2}-1)}
Поэтому
σ
11
−
σ
22
=
2
(
C
1
+
C
2
)
(
λ
2
−
1
λ
2
)
{\displaystyle \sigma _{11}-\sigma _{22}=2(C_{1}+C_{2})\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{2}}}\right)}
Для чистой сдвиговой деформации
I
1
=
λ
1
2
+
λ
2
2
+
λ
3
2
=
λ
2
+
1
λ
2
+
1
;
I
2
=
1
λ
1
2
+
1
λ
2
2
+
1
λ
3
2
=
1
λ
2
+
λ
2
+
1
{\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=\lambda ^{2}+{\cfrac {1}{\lambda ^{2}}}+1~;~~I_{2}={\cfrac {1}{\lambda _{1}^{2}}}+{\cfrac {1}{\lambda _{2}^{2}}}+{\cfrac {1}{\lambda _{3}^{2}}}={\cfrac {1}{\lambda ^{2}}}+\lambda ^{2}+1}
Поэтому
I
1
=
I
2
{\displaystyle I_{1}=I_{2}}
.
Градиент деформации при простой сдвиговой деформации имеет вид [ 7 ]
F
=
1
+
γ
e
1
⊗
e
2
{\displaystyle {\boldsymbol {F}}={\boldsymbol {1}}+\gamma ~\mathbf {e} _{1}\otimes \mathbf {e} _{2}}
где
e
1
,
e
2
{\displaystyle \mathbf {e} _{1},\mathbf {e} _{2}}
являются эталонными ортонормированными базисными векторами в плоскости деформации, а деформация сдвига определяется выражением
γ
=
λ
−
1
λ
;
λ
1
=
λ
;
λ
2
=
1
λ
;
λ
3
=
1
{\displaystyle \gamma =\lambda -{\cfrac {1}{\lambda }}~;~~\lambda _{1}=\lambda ~;~~\lambda _{2}={\cfrac {1}{\lambda }}~;~~\lambda _{3}=1}
Тогда в матричной форме градиент деформации и левый тензор деформации Коши-Грина могут быть выражены как
F
=
[
1
γ
0
0
1
0
0
0
1
]
;
B
=
F
⋅
F
T
=
[
1
+
γ
2
γ
0
γ
1
0
0
0
1
]
{\displaystyle {\boldsymbol {F}}={\begin{bmatrix}1&\gamma &0\\0&1&0\\0&0&1\end{bmatrix}}~;~~{\boldsymbol {B}}={\boldsymbol {F}}\cdot {\boldsymbol {F}}^{T}={\begin{bmatrix}1+\gamma ^{2}&\gamma &0\\\gamma &1&0\\0&0&1\end{bmatrix}}}
Поэтому,
B
−
1
=
[
1
−
γ
0
−
γ
1
+
γ
2
0
0
0
1
]
{\displaystyle {\boldsymbol {B}}^{-1}={\begin{bmatrix}1&-\gamma &0\\-\gamma &1+\gamma ^{2}&0\\0&0&1\end{bmatrix}}}
Напряжение Коши определяется выражением
σ
=
[
−
p
∗
+
2
(
C
1
−
C
2
)
+
2
C
1
γ
2
2
(
C
1
+
C
2
)
γ
0
2
(
C
1
+
C
2
)
γ
−
p
∗
+
2
(
C
1
−
C
2
)
−
2
C
2
γ
2
0
0
0
−
p
∗
+
2
(
C
1
−
C
2
)
]
{\displaystyle {\boldsymbol {\sigma }}={\begin{bmatrix}-p^{*}+2(C_{1}-C_{2})+2C_{1}\gamma ^{2}&2(C_{1}+C_{2})\gamma &0\\2(C_{1}+C_{2})\gamma &-p^{*}+2(C_{1}-C_{2})-2C_{2}\gamma ^{2}&0\\0&0&-p^{*}+2(C_{1}-C_{2})\end{bmatrix}}}
Для обеспечения соответствия линейной эластичности, очевидно,
μ
=
2
(
C
1
+
C
2
)
{\displaystyle \mu =2(C_{1}+C_{2})}
где
μ
{\displaystyle \mu }
– модуль сдвига.
Упругая реакция резиноподобных материалов часто моделируется на основе модели Муни-Ривлина. Константы
C
1
,
C
2
{\displaystyle C_{1},C_{2}}
определяются путем подгонки прогнозируемого напряжения из приведенных выше уравнений к экспериментальным данным. Рекомендуемые испытания: одноосное растяжение, равноосное сжатие, равнобиаксиальное растяжение, одноосное сжатие, а на сдвиг — плоское растяжение и плоское сжатие. Двухпараметрическая модель Муни-Ривлина обычно справедлива для деформаций менее 100%. [ 8 ]
^ Муни, М., 1940, Теория большой упругой деформации , Журнал прикладной физики, 11 (9), стр. 582–592.
^ Ривлин Р.С., 1948, Большие упругие деформации изотропных материалов. IV. Дальнейшее развитие общей теории , Philosophical Transactions of the Royal Society of London. Серия A, Математические и физические науки, 241 (835), стр. 379–397.
^ Буланже, П. и Хейс, Массачусетс, 2001, «Волны конечной амплитуды в материалах Муни-Ривлина и Адамара», в «Темах конечной упругости» , под ред. М. А. Хейс и Дж. Соккоманди, Международный центр механических наук.
^ CW Macosko, 1994, Реология: принципы, измерения и приложения , VCH Publishers, ISBN 1-56081-579-5 .
^ Унимодулярность в этом контексте означает
det
B
¯
=
1
{\displaystyle \det {\bar {\boldsymbol {B}}}=1}
.
^ Бауэр, Аллан (2009). Прикладная механика твердого тела . ЦРК Пресс. ISBN 978-1-4398-0247-2 . Проверено 19 апреля 2018 г.
^ Jump up to: а б Огден, Р.В., 1984, Нелинейные упругие деформации , Дувр.
^ Хамза, Мухсин; Алван, Хасан (2010). «Гиперупругое конститутивное моделирование резины и резиноподобных материалов при конечной деформации» . Инж. и техн. Журнал . 28 (13): 2560–2575. дои : 10.30684/etj.28.13.5 .