Закон обратных квадратов
В науке закон обратных квадратов — это любой научный закон, что наблюдаемая «интенсивность» определенной физической величины квадрату обратно пропорциональна расстояния утверждающий , от источника этой физической величины. Фундаментальную причину этого можно понять как геометрическое разбавление, соответствующее излучению точечного источника, в трехмерное пространство.
Энергия радара увеличивается как во время передачи сигнала, так и при его отражении , поэтому обратный квадрат для обоих путей означает, что радар будет получать энергию в соответствии с обратной четвертой степенью дальности.
Чтобы предотвратить разбавление энергии при распространении сигнала, можно использовать определенные методы, такие как волновод , который действует как канал для воды, или то, как ствол пушки ограничивает расширение горячего газа одним измерением , чтобы предотвратить потерю передачи энергии к пуля .
Формула
[ редактировать ]В математических обозначениях закон обратных квадратов можно выразить как интенсивность (I), меняющуюся в зависимости от расстояния (d) от некоторого центра. Интенсивность пропорциональна (см . ∝ ) обратной величине квадрата расстояния, таким образом:
Математически это также можно выразить как:
или как формулировка постоянной величины:
Дивергенция , которое является результатом действия радиальных полей закона обратных квадратов относительно одного или нескольких источников , векторного поля пропорциональна силе локальных источников и, следовательно, нулю внешних источников. Закон всемирного тяготения Ньютона подчиняется закону обратных квадратов, как и эффекты электрических , световых , звуковых и радиационных явлений.
Обоснование
[ редактировать ]Закон обратных квадратов обычно применяется, когда некоторая сила, энергия или другая сохраняющаяся величина равномерно излучается наружу от точечного источника в трехмерном пространстве . Поскольку площадь поверхности сферы 4π (которая равна r 2 ) пропорционален квадрату радиуса, поскольку по мере удаления от источника испускаемое излучение распространяется по площади, увеличивающейся пропорционально квадрату расстояния от источника. Следовательно, интенсивность излучения, проходящего через любую единицу площади (непосредственно обращенную к точечному источнику), обратно пропорциональна квадрату расстояния от точечного источника. Закон гравитации Гаусса применим аналогичным образом и может использоваться с любой физической величиной, которая действует в соответствии с соотношением обратных квадратов.
События
[ редактировать ]Гравитация
[ редактировать ]Гравитация – это притяжение между объектами, имеющими массу. Закон Ньютона гласит:
Сила гравитационного притяжения между двумя точечными массами прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Силы всегда притягивают и действуют по линии, соединяющей их. [ нужна ссылка ]
Если распределение материи в каждом теле сферически симметрично, то объекты можно рассматривать как точечные массы без аппроксимации, как показано в теореме о оболочках . В противном случае, если мы хотим рассчитать притяжение между массивными телами, нам нужно сложить все силы притяжения между точками векторно, и чистое притяжение может не быть точным обратным квадратом. в хорошем приближении разумно рассматривать массы как точечную массу, расположенную в центре масс Однако если расстояние между массивными телами гораздо больше по сравнению с их размерами, то при расчете гравитационной силы объекта.
В качестве закона тяготения этот закон был предложен в 1645 году Исмаэлем Буллиалдом . Но Буллиалд не принял второй и третий законы Кеплера , а также не оценил решение Христиана Гюйгенса о круговом движении (движении по прямой линии, оттягиваемом в сторону центральной силой). Действительно, Буллиалд утверждал, что солнечная сила притягивает в афелии и отталкивает в перигелии. Роберт Гук и Джованни Альфонсо Борелли в 1666 году объяснили гравитацию как силу притяжения. [1] Лекция Гука «О гравитации» прошла в Королевском обществе в Лондоне 21 марта. [2] «Теория планет» Борелли была опубликована позже, в 1666 году. [3] В лекции Гука в Грешеме 1670 года объяснялось, что гравитация применима ко «всем небесным телам», и добавлялись принципы, согласно которым сила тяготения уменьшается с расстоянием и что в отсутствие такой силы тела движутся по прямым линиям. К 1679 году Гук считал, что гравитация имеет обратную квадратичную зависимость, и сообщил об этом в письме Исааку Ньютону : [4] Я предполагаю, что притяжение всегда пропорционально расстоянию от центра взаимного воздействия . [5]
Гук по-прежнему был огорчен заявлениями Ньютона об изобретении этого принципа, хотя в «Началах» Ньютона 1686 года признавалось, что Гук, наряду с Реном и Галлеем, отдельно оценил закон обратных квадратов в Солнечной системе. [6] а также отдать должное Буллиалду. [7]
Электростатика
[ редактировать ]Сила притяжения или отталкивания между двумя электрически заряженными частицами не только прямо пропорциональна произведению электрических зарядов, но и обратно пропорциональна квадрату расстояния между ними; это известно как закон Кулона . Отклонение показателя степени от 2 составляет менее одной части из 10. 15 . [8]
Свет и другое электромагнитное излучение
[ редактировать ]Интенсивность точечного (или освещенность , или облученность ) света или других линейных волн, исходящих от источника (энергия на единицу площади, перпендикулярной источнику), обратно пропорциональна квадрату расстояния от источника, поэтому объект (того же типа) размер) в два раза дальше получает лишь четверть энергии (за тот же период времени).
В более общем смысле, интенсивность излучения, то есть интенсивность (или мощность на единицу площади в направлении распространения , ) сферического волнового фронта изменяется обратно пропорционально квадрату расстояния от источника (при условии отсутствия потерь, вызванных поглощением или рассеянием ). .
Например, интенсивность излучения Солнца составляет 9126 Вт на квадратный метр на расстоянии Меркурия (0,387 а.е. ); но всего 1367 Вт на квадратный метр на расстоянии от Земли (1 а.е.) — примерно трехкратное увеличение расстояния приводит к примерно девятикратному уменьшению интенсивности излучения.
Для неизотропных излучателей, таких как параболические антенны , фары и лазеры , эффективное начало координат расположено далеко за апертурой луча. Если вы находитесь близко к началу координат, вам не нужно далеко ходить, чтобы удвоить радиус, поэтому сигнал быстро падает. Когда вы находитесь далеко от источника и все еще имеете сильный сигнал, как в случае с лазером, вам придется путешествовать очень далеко, чтобы удвоить радиус и уменьшить сигнал. Это означает, что у вас более сильный сигнал или усиление антенны в направлении узкого луча по сравнению с широким лучом во всех направлениях изотропной антенны .
В фотографии и сценическом освещении закон обратных квадратов используется для определения «спада» или разницы в освещенности объекта по мере его приближения к источнику света или удаления от него. Для быстрых приближений достаточно помнить, что увеличение расстояния вдвое уменьшает освещенность на четверть; [9] или аналогичным образом, чтобы уменьшить освещенность вдвое, увеличьте расстояние в 1,4 раза ( квадратный корень из 2 ), а чтобы удвоить освещенность, уменьшите расстояние до 0,7 (квадратный корень из 1/2). Когда источник света не является точечным источником, правило обратных квадратов часто остается полезным приближением; при размере источника света менее одной пятой расстояния до объекта ошибка расчета составляет менее 1%. [10]
Дробное уменьшение электромагнитной флюенса (Φ) для косвенно ионизирующего излучения с увеличением расстояния от точечного источника можно рассчитать с помощью закона обратных квадратов. Поскольку выбросы точечного источника имеют радиальные направления, они перехватываются перпендикулярно. Площадь такой оболочки равна 4π r 2 где r — радиальное расстояние от центра. Закон особенно важен при планировании диагностической рентгенографии и лучевой терапии, хотя эта пропорциональность не соблюдается в практических ситуациях, если только размеры источника не намного меньше расстояния. Как говорится в теории тепла Фурье , «поскольку точечный источник представляет собой увеличение на расстоянии, его излучение разбавлено пропорционально греху угла увеличивающейся дуги окружности от точки начала».
Пример
[ редактировать ]Пусть P — полная мощность, излучаемая точечным источником (например, всенаправленным изотропным излучателем ). На больших расстояниях от источника (по сравнению с размерами источника) эта мощность распределяется по все большим и большим сферическим поверхностям по мере увеличения расстояния от источника. Поскольку площадь поверхности сферы радиуса r равна A = 4 πr 2 , интенсивность I (мощность на единицу площади) излучения на расстоянии r равна
Энергия или интенсивность уменьшается (деленная на 4) при увеличении расстояния ; r вдвое если измерять в дБ, то оно уменьшится на 6,02 дБ при удвоении расстояния. Применительно к измерениям величин мощности соотношение можно выразить как уровень в децибелах, вычислив десятикратный логарифм отношения измеренной величины к эталонному значению.
Звук в газе
[ редактировать ]В акустике звуковое давление сферического исходящего волнового фронта, расстояния r от точечного источника, уменьшается на 50% при увеличении вдвое; измеренное в дБ , снижение по-прежнему составляет 6,02 дБ, поскольку дБ представляет собой соотношение интенсивностей. Коэффициент давления (в отличие от коэффициента мощности) не обратно квадратичен, а обратно пропорционален (закон обратного расстояния):
То же самое справедливо и для составляющей скорости частицы что синфазно с мгновенным звуковым давлением :
В ближнем поле имеется квадратурная составляющая скорости частицы, которая на 90° сдвинута по фазе со звуковым давлением и не вносит вклад в усредненную по времени энергию или интенсивность звука. Интенсивность звука представляет собой произведение среднеквадратического звукового давления и синфазной составляющей среднеквадратичной скорости частицы, оба из которых обратно пропорциональны. Соответственно, интенсивность подчиняется обратно квадратичному закону:
Интерпретация теории поля
[ редактировать ]Для безвихревого векторного поля в трехмерном пространстве закон обратных квадратов соответствует тому свойству, что дивергенция равна нулю вне источника. Это можно обобщить на более высокие измерения. Как правило, для безвихревого векторного поля в n -мерном евклидовом пространстве интенсивность «I» векторного поля падает с расстоянием «r» согласно обратному закону ( n - 1) й степенной закон
при условии, что пространство вне источника бездивергентно. [ нужна ссылка ]
Неевклидовы последствия
[ редактировать ]Закон обратных квадратов, фундаментальный в евклидовых пространствах, также применим к неевклидовой геометрии , включая гиперболическое пространство . Присущая этим пространствам кривизна влияет на физические законы, лежащие в основе различных областей, таких как космология , общая теория относительности и теория струн . [11]
Джон Д. Барроу в своей статье 2020 года «Неевклидова ньютоновская космология» подробно описывает поведение силы (F) и потенциала (Φ) в гиперболическом трехмерном пространстве (H3). Он показывает, что F и Φ подчиняются формулам F ∝ 1 / R^2 sinh^2(r/R) и Φ ∝ coth(r/R), где R и r представляют собой радиус кривизны и расстояние от фокальной точки, соответственно. [11]
Концепция размерности пространства, впервые предложенная Иммануилом Кантом, является постоянной темой дебатов в отношении закона обратных квадратов. [12] Димитрия Электра Гация и Рекс Д. Рамсьер в своей статье 2021 года утверждают, что закон обратных квадратов больше относится к симметрии распределения сил, чем к размерности пространства. [12]
В сфере неевклидовой геометрии и общей теории относительности отклонения от закона обратных квадратов могут быть связаны не с самим законом, а скорее с предположением, что сила между телами мгновенно зависит от расстояния, что противоречит специальной теории относительности . Вместо этого общая теория относительности интерпретирует гравитацию как искажение пространства-времени, заставляющее свободно падающие частицы пересекать геодезические линии в этом искривленном пространстве-времени. [13]
История
[ редактировать ]Джон Дамблтон XIV века из Оксфордских калькуляторов был одним из первых, кто выразил функциональные отношения в графической форме. Он дал доказательство теоремы о средней скорости, утверждающей, что «широта равномерно деформированного движения соответствует градусу средней точки», и использовал этот метод для изучения количественного уменьшения интенсивности освещения в своей «Сумме логики и естественной философии» (ок. 1349), заявив, что оно не было линейно пропорционально расстоянию, но не смогло раскрыть закон обратных квадратов. [14]
В предложении 9 Книги 1 своей книги Ad Vitellionem paralipomena, quibus astronomae pars optica traditur (1604 г.) астроном Иоганн Кеплер утверждал, что распространение света от точечного источника подчиняется закону обратных квадратов: [15] [16]
Подобно тому, как сферические поверхности, у которых начало света находится в центре, больше к более узкому, так и сила или плотность световых лучей в более узкой, к более рыхлой сфере, то есть перевернутой. Ибо согласно 6.7 в более узкой сферической поверхности столько же света, сколько и в более слитой, поэтому там он гораздо плотнее и плотнее, чем здесь. | Подобно тому, как [соотношение] сферических поверхностей, для которых источником света является центр, [находится] от более широких к более узким, так и плотность или сила лучей света в более узком [пространстве] в сторону более просторные сферические поверхности, то есть наоборот. Ибо, согласно [предложениям] 6 и 7, в более узкой сферической поверхности столько же света, как и в более широкой, поэтому здесь он настолько же более сжат и плотен, чем там. |
В 1645 году в своей книге «Астрономия Филолайка ...» французский астроном Исмаэль Буллиалд (1605–1694) опроверг предположение Иоганна Кеплера о том, что «гравитация» [17] ослабевает пропорционально расстоянию; вместо этого, утверждал Буллиалду, «гравитация» ослабевает пропорционально квадрату расстояния: [18] [19]
Теперь та сила, с помощью которой Солнце захватывает или захватывает планеты, является телесной, которая предназначена для его собственных рук, посылается прямыми линиями во всю протяженность мира, как если бы это была разновидность Солнца, вращающаяся с тело его уменьшение такое же, как и у света, а именно в отношении удвоенных интервалов, но обратное. | Что же касается силы, с помощью которой Солнце захватывает или удерживает планеты и которая, будучи телесной, действует подобно рукам, то она излучается прямыми линиями по всей протяженности мира, и подобно видам Солнца, она вращается вместе с телом Солнца; теперь, видя, что оно телесно, оно становится слабее и утончается на большем расстоянии или интервале, и соотношение уменьшения его силы такое же, как и в случае со светом, а именно удвоенная пропорция, но обратная, расстояний [то есть 1/d²]. |
В Англии англиканский епископ Сет Уорд (1617–1689) обнародовал идеи Буллиальда в своей критике в книге «Исмаэлис Буллиальди астрономические филолайские фундаментальные инквизиции Бревис» (1653 г.) и предал гласности планетарную астрономию Кеплера в своей книге «Астрономия геометрическая» (1656 г.).
В 1663–1664 английский учёный Роберт Гук писал книгу «Микрография» (1666), в которой обсуждал, среди прочего, связь между высотой атмосферы и барометрическим давлением у её поверхности. Поскольку атмосфера окружает Землю, которая сама по себе является сферой, объем атмосферы, охватывающий любую единицу площади земной поверхности, представляет собой усеченный конус (который простирается от центра Земли до вакуума космоса; очевидно, только часть конуса от поверхности Земли до космических медведей на поверхности Земли). Хотя объем конуса пропорционален кубу его высоты, Гук утверждал, что давление воздуха на поверхности Земли вместо этого пропорционально высоте атмосферы, поскольку сила тяжести уменьшается с высотой. Хотя Гук не утверждал этого явно, предложенное им соотношение было бы верным только в том случае, если сила тяжести уменьшается пропорционально квадрату расстояния от центра Земли. [20] [21]
См. также
[ редактировать ]- Поток
- Антенна (радио)
- Закон Гаусса
- Законы движения планет Кеплера
- проблема Кеплера
- Телекоммуникации , в частности:
- Обратная пропорциональность
- Мультипликативный обратный
- Распад расстояния
- Парадокс Ферми
- Закон квадрата-куба
- Принцип подобия
Ссылки
[ редактировать ]В этой статье использованы общедоступные материалы из Федеральный стандарт 1037C . Управление общего обслуживания . Архивировано из оригинала 22 января 2022 года.
- ^ Гравитация Гука также еще не была универсальной, хотя она приближалась к универсальности более близко, чем предыдущие гипотезы: см. страницу 239 в книге Кертиса Уилсона (1989), «Ньютоновские достижения в астрономии», глава 13 (страницы 233–274) в «Планетарной астрономии». от эпохи Возрождения до расцвета астрофизики: 2А: Тихо Браге до Ньютона», CUP 1989.
- ^ Томас Берч, История Лондонского королевского общества ,… (Лондон, Англия: 1756), том. 2, страницы 68–73 ; особенно см. стр. 70–72.
- ^ Джованни Альфонсо Борелли, Theoricae Mediceorum Planetarum ex Causis Physicis Deductae [Теория [движения] планет Медичи [т. е. спутников Юпитера], выведенная из физических причин] (Флоренция, (Италия): 1666 г.)
- ^ Койре, Александр (1952). «Неопубликованное письмо Роберта Гука Исааку Ньютону». Исида . 43 (4): 312–337. дои : 10.1086/348155 . JSTOR 227384 . ПМИД 13010921 . S2CID 41626961 .
- ↑ Письмо Гука Ньютону от 6 января 1680 г. (Койре 1952:332).
- ^ Ньютон признал Рена, Гука и Галлея в этой связи в Схолии к предложению 4 в Книге 1 (во всех изданиях): См., Например, английский перевод «Начал » 1729 года на странице 66 .
- ↑ В письме Эдмунду Галлею от 20 июня 1686 года Ньютон писал: «Буллиальд писал, что вся сила, относящаяся к Солнцу как к своему центру и зависящая от материи, должна находиться в двойном соотношении расстояния от центра». См.: И. Бернард Коэн и Джордж Э. Смит, ред., «Кембриджский спутник Ньютона» (Кембридж, Англия: Cambridge University Press, 2002), стр. 204 .
- ^ Уильямс, Э.; Фаллер, Дж.; Хилл, Х. (1971), «Новая экспериментальная проверка закона Кулона: лабораторный верхний предел массы покоя фотона», Physical Review Letters , 26 (12): 721–724, Бибкод : 1971PhRvL..26..721W , doi : 10.1103/PhysRevLett.26.721
- ^ Миллерсон, Г. (1991) Освещение для кино и телевидения - 3-е издание, стр.27
- ^ Райер, А. (1997) «Справочник по светоизмерению», ISBN 0-9658356-9-3 стр.26
- ^ Jump up to: а б Барроу, Джон Д. (2020). «Неевклидова ньютоновская космология» . Классическая и квантовая гравитация . 37 (12): 125007. arXiv : 2002.10155 . Бибкод : 2020CQGra..37l5007B . дои : 10.1088/1361-6382/ab8437 . Архивировано из оригинала 25 февраля 2020 года . Проверено 30 июля 2023 г.
- ^ Jump up to: а б Гация, Димитрия Электра; Рамсиер, Рекс Д. (2021). «Размерность, симметрия и закон обратных квадратов» . Примечания и записи . 75 (2): 333–347. дои : 10.1098/rsnr.2019.0044 . Проверено 30 июля 2023 г.
- ^ «Введение в неевклидову общую теорию относительности» (PDF) . MIT OpenCourseWare. 2018 . Проверено 30 июля 2023 г.
- ^ Джон Фрили, До Галилея: рождение современной науки в средневековой Европе (2012)
- ^ Иоганн Кеплер, Ad Vitellion Paralipomena, которому передана оптическая часть астрономии (Франкфурт, (Германия): Клод де Марн и наследник Жан Обри, 1604), стр. 10.
- ^ Кеплера Перевод латинской цитаты из Ad Vitellionem paralipomena взят из: Гал, О. и Чен-Моррис, Р. (2005) «Археология закона обратных квадратов: (1) Метафизические образы и математические практики», История науки. , 43 : 391–414; см. особенно стр. 397.
- ^ Примечание: И Кеплер, и Уильям Гилберт почти предвосхитили современную концепцию гравитации, им не хватало только закона обратных квадратов в их описании «гравитации». На странице 4 главы 1 «Введение» « Новой астрономии » Кеплер приводит свое описание следующим образом: «Истинная теория гравитации основана на следующих аксиомах: каждая телесная субстанция, поскольку она телесна, имеет естественную приспособленность к покою в каждом месте, где она может находиться сама по себе за пределами сферы влияния родственного тела. при этом гравитация — это взаимное стремление между родственными телами к союзу или соединению (аналогично магнетической силе), так что земля притягивает камень скорее, чем камень ищет землю. ... Если бы два камня поместили в любой части света рядом друг с другом и вне сферы влияния третьего родственного тела, то эти камни, как две магнитные иглы, сошлись бы в промежуточной точке, приближаясь каждый к другому на расстояние пропорциональна сравнительной массе другого . Если бы Луна и Земля не удерживались на своих орбитах своей живой силой или каким-либо другим эквивалентом, Земля поднялась бы к Луне на пятьдесят четвертую часть их расстояния, а Луна упала бы на Землю на остальные пятьдесят три части. части, и они там встретились бы, предполагая, однако, что субстанция обеих имеет одинаковую плотность». Обратите внимание, что, говоря: « земля притягивает камень, а не камень ищет землю», Кеплер порывает с аристотелевской традицией, согласно которой объекты стремятся находиться на своем естественном месте, а камень стремится быть с землей.
- ^ Исмаил Буллиалдус, Astronomia Philolaica ... (Париж, Франция: Пиже, 1645), стр. 23.
- ^ Перевод латинской цитаты из «Astronomia Philolaica» Буллиалда… взят из: О'Коннор, Джон Дж. и Роберсон, Эдмунд Ф. (2006). «Исмаэль Буллио» . Архивировано 30 ноября 2016 года в Wayback Machine , The MacTutor History of Математический архив, Школа математики и статистики, Университет Сент-Эндрюс, Шотландия.
- ^ (Гал и Чен-Моррис, 2005), стр. 391–392.
- ^ Роберт Гук, Микрография … (Лондон, Англия: Джон Мартин, 1667), стр. 227: «[Я говорю Цилиндр , а не часть Конуса , потому что, как я могу показать в другом месте в Объяснении Гравитации, эта тройная пропорция оболочек Сферы до их соответствующих диаметров, я предполагаю, что в этом случае они будут удалены за счет уменьшения силы Гравитации.]"