Физика твердого тела
Физика твердого тела — это изучение твердой материи или твердых тел с помощью таких методов, как химия твердого тела , квантовая механика , кристаллография , электромагнетизм и металлургия . Это крупнейший раздел физики конденсированного состояния . Физика твердого тела изучает, как крупномасштабные свойства твердых материалов являются результатом их свойств атомного масштаба. Таким образом, физика твердого тела составляет теоретическую основу материаловедения . Наряду с химией твердого тела он также имеет прямое применение в технологии транзисторов и полупроводников .
Предыстория [ править ]
Твердые материалы образуются из плотно упакованных атомов, которые интенсивно взаимодействуют. Эти взаимодействия определяют механические (например, твердость и эластичность ), тепловые , электрические , магнитные и оптические свойства твердых тел. В зависимости от используемого материала и условий, в которых он образовался, атомы могут быть расположены в правильном геометрическом порядке ( кристаллические твердые тела , к которым относятся металлы и обычный водяной лед ) или нерегулярно ( аморфное твердое тело, такое как обычное оконное стекло ).
Основная часть физики твердого тела, как общей теории, сосредоточена на кристаллах . В первую очередь это связано с тем, что периодичность атомов в кристалле — его определяющая характеристика — облегчает математическое моделирование. Аналогично, кристаллические материалы часто обладают электрическими , магнитными , оптическими или механическими свойствами, которые можно использовать в инженерных целях.
Силы между атомами в кристалле могут принимать самые разные формы. Например, в кристалле хлорида натрия (поваренной соли) кристалл состоит из ионных натрия и хлора и скрепляется ионными связями . В других атомы разделяют электроны и образуют ковалентные связи . В металлах электроны распределяются по всему кристаллу в результате металлической связи . Наконец, благородные газы не подвергаются ни одному из этих типов связей. В твердой форме благородные газы удерживаются вместе силами Ван-дер-Ваальса , возникающими в результате поляризации электронного облака заряда на каждом атоме. Различия между типами твердых тел обусловлены различиями в способах их связи.
История [ править ]
Физические свойства твердых тел были обычным предметом научных исследований на протяжении веков, но отдельная область под названием физика твердого тела не возникла до 1940-х годов , в частности, с созданием Отдела физики твердого тела (DSSP). в рамках Американского физического общества . DSSP обслуживал промышленных физиков, а физика твердого тела стала ассоциироваться с технологическими приложениями, ставшими возможными благодаря исследованиям твердого тела. К началу 1960-х годов DSSP было крупнейшим подразделением Американского физического общества. [1] [2]
Крупные сообщества физиков твердого тела также возникли в Европе после Второй мировой войны , в частности в Англии , Германии и Советском Союзе . [3] В Соединенных Штатах и Европе твердое тело стало заметной областью благодаря исследованиям полупроводников , сверхпроводимости , ядерного магнитного резонанса и множества других явлений. В начале холодной войны исследования в области физики твердого тела часто не ограничивались твердыми телами, что побудило некоторых физиков в 1970-х и 1980-х годах основать область физики конденсированного состояния , которая была организована вокруг общих методов, используемых для исследования твердых тел, жидкостей, плазмы и т. д. и другие сложные вопросы. [1] Сегодня физика твердого тела широко считается разделом физики конденсированного состояния, часто называемым твердым конденсированным веществом, который фокусируется на свойствах твердых тел с регулярными кристаллическими решетками.
Кристаллическая структура и свойства [ править ]
На многие свойства материалов влияет их кристаллическая структура . Эту структуру можно исследовать с помощью ряда кристаллографических методов, включая рентгеновскую кристаллографию , дифракцию нейтронов и дифракцию электронов .
Размеры отдельных кристаллов кристаллического твердого материала варьируются в зависимости от используемого материала и условий его образования. Большинство кристаллических материалов, встречающихся в повседневной жизни, являются поликристаллическими , причем отдельные кристаллы имеют микроскопические размеры, но макроскопические монокристаллы могут быть произведены либо естественным путем (например, алмазы ), либо искусственно.
Реальные кристаллы имеют дефекты или нарушения в идеальном расположении, и именно эти дефекты критически определяют многие электрические и механические свойства реальных материалов.
Электронные свойства [ править ]
Свойства материалов, такие как электропроводность и теплоемкость, исследуются физикой твердого тела. Ранней моделью электропроводности была модель Друде , которая применяла кинетическую теорию к электронам в твердом теле. Предполагая, что материал содержит неподвижные положительные ионы и «электронный газ» из классических невзаимодействующих электронов, модель Друде смогла объяснить электрическую и теплопроводность , а также эффект Холла в металлах, хотя она сильно переоценила электронную теплоемкость.
Арнольд Зоммерфельд объединил классическую модель Друде с квантовой механикой в модели свободных электронов (или модели Друде-Зоммерфельда). Здесь электроны моделируются как ферми-газ , газ частиц, которые подчиняются квантовомеханической статистике Ферми-Дирака . Модель свободных электронов дала улучшенные прогнозы теплоемкости металлов, однако она не смогла объяснить существование изоляторов .
Модель почти свободных электронов представляет собой модификацию модели свободных электронов, которая включает слабое периодическое возмущение , предназначенное для моделирования взаимодействия между электронами проводимости и ионами в кристаллическом твердом теле. Вводя идею электронных зон , теория объясняет существование проводников , полупроводников и изоляторов .
Модель почти свободных электронов переписывает уравнение Шрёдингера для случая периодического потенциала . Решения в этом случае известны как состояния Блоха . Поскольку теорема Блоха применима только к периодическим потенциалам и поскольку непрерывные случайные движения атомов в кристалле нарушают периодичность, такое использование теоремы Блоха является лишь приближением, но оно оказалось чрезвычайно ценным приближением, без которого большая часть физики твердого тела анализ будет невозможен. Отклонения от периодичности рассматриваются с помощью квантово-механической теории возмущений .
Современные исследования [ править ]
Современные темы исследований в области физики твердого тела включают:
- Высокотемпературная сверхпроводимость
- Квазикристаллы
- Спиновое стекло
- Сильно коррелированные материалы
- Двумерные материалы
- Наноматериалы
См. также [ править ]
Ссылки [ править ]
- ^ Jump up to: Перейти обратно: а б Мартин, Джозеф Д. (2015). «Что значит смена названия? Физика твердого тела, физика конденсированного состояния и материаловедение» (PDF) . Физика в перспективе . 17 (1): 3–32. Бибкод : 2015ФП....17....3М . дои : 10.1007/s00016-014-0151-7 . S2CID 117809375 . Архивировано (PDF) из оригинала 14 декабря 2019 г.
- ^ Ходдесон, Лилиан; и др. (1992). Из кристаллического лабиринта: главы из истории физики твердого тела . Издательство Оксфордского университета. ISBN 9780195053296 .
- ^ Хоффманн, Дитер (2013). «Пятьдесят лет Physica Status Solidi в исторической перспективе». Физический статус Solidi B. 250 (4): 871–887. Бибкод : 2013PSSBR.250..871H . дои : 10.1002/pssb.201340126 . S2CID 122917133 .
Дальнейшее чтение [ править ]
- Нил В. Эшкрофт и Н. Дэвид Мермин , Физика твердого тела (Harcourt: Орландо, 1976).
- Чарльз Киттель , Введение в физику твердого тела (Wiley: Нью-Йорк, 2004).
- Х. М. Розенберг, Твердое тело (Издательство Оксфордского университета: Оксфорд, 1995).
- Стивен Х. Саймон , Оксфордские основы твердого тела (Oxford University Press: Oxford, 2013).
- Выход из хрустального лабиринта. Главы из истории физики твердого тела , под ред. Лилиан Ходдесон, Эрнест Браун, Юрген Тайхманн, Спенсер Уирт (Оксфорд: Oxford University Press, 1992).
- М. А. Омар, Элементарная физика твердого тела (пересмотренная печать, Аддисон-Уэсли, 1993).
- Хофманн, Филип (26 мая 2015 г.). Физика твердого тела (2-е изд.). Вайли-ВЧ. ISBN 978-3527412822 .